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A b s t r a c t 

Maritime shipping stands as a pivotal pillar within the global economy, facilitating the t ra n s - 
portation of over 90% of the world's commodities and also major contributor to carbon e m i s - 
sions. Maritime industy is a very volatile system generating very large and complex d a t a 
sets. Employing the robust framework of Big Data analysis, this thesis explores the c a r b o n 
emissions of maritime shipping through indicators like Carbon Intensity Indicator (CII) a n d 
Energy Efficiency Operating Indicator (EEOI). Analysing emissions of about 9400 v e s s e l s 
grouped by segments and assigning them A to E grade based on their emissions helps us t o 
understand complexity of emissions in maritime shipping with simple grading s y s t e m . 

The projection of Carbon Intensity Indicator (CII) trends for the period 2023 to 2026 e l u - 
cidates a concerning pattern: a growing number of vessels may soon be graded D or E d u e 
to elevated carbon intensity. The examination of the interplay between vessel speed, E E O I , 
and grade exposes noteworthy insights. It is evident that vessels exhibiting lower speed a n d 
reduced EEOI tend to achieve superior grades. This revelation helps to inovate to find p ra c t i c a l 
and cost-effective pathways for emissions mitigation, including measures such as the r e d u c - 
tion of vessel speed, the implementation of low friction coatings, and the diligent m a i n t e n a n c e 
of propellers and h u ll s . 

This thesis makes significant strides in advancing our comprehension of maritime s h i p - 
ping's carbon impact. By offering pragmatic solutions, it not only addresses a pressing c o n c e rn 
but also lays the groundwork for responsible and informed industry p ra c t i c e s . 
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Chapter 1 

I n t r o d u c t i o n 

1.1 Background and M o t i v a t i o n 

In the 21st century, climate change is the biggest challenge faced by humanity. It poses a 
substantial danger to the survival of the inhabitants of our planet. Human activities such a s 
deforestation, extraction and burning of fossil fuels have led to a rise in global t e m p e ra t ur e s . 
The consequences of such activities are an increase in sea levels, extreme weather e v e n t s , 
and loss of biodiversity. There is an urgent and undeniable need to reduce greenhouse g a s 
emissions and transition to a sustainable and low-carbon fu t ur e . 

Maritime shipping is essential to the global economy. It accounts for transporting 9 0 % 
of the world's goods by volume. It is also a major source of greenhouse gas emissions, w i t h 
the International Maritime Organization (IMO) estimating that maritime shipping accounts fo r 
3% of global carbon dioxide emissions. While 3% may seem small, it is important to n o t e 
that this is a rapidly growing sector. Without action, maritime shipping contribution to c a r b o n 
emissions can increase by up to 10-13% in the next few decades. Due to this fact, there is a 
growing global effort to reduce emissions from this sector. [ 13 ]. 

The European Green Deal is a significant initiative by the European Union to make E u - 
rope the world's first climate-neutral continent by 2050 . It aims to transform various s e c t o r s , 
including shipping, to reduce environmental impacts. Through meticulous analysis of t o t a l 
carbon emissions within the maritime sector using advanced data techniques, this research c a n 
significantly contributes to the goals of the European Green Deal. It can aid in fo r m u l a t i n g 
policies, monitoring progress, and promoting sustainable practices, aligning with the G r e e n 
Deal's emphasis on innovation, global cooperation, and eco-conscious industrial t ra n s fo r m a - 
tion [23]. This study's alignment with the European Green Deal underscores its relevance a n d 
importance within the broader context of sustainability-focused e n d e a v o r s . 

In accordance with Sustainable Development Goal 13, in 2018, the initial strategy w a s 
adopted by IMO's Environmental Protection Committee (MEPC), during its 72nd session a t 
IMO Headquarters in London, United Kingdom. According to this strategy, the IMO w ill 
work towards reducing the total annual greenhouse gas emissions from international s h i p p i n g 
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CHAPTER 1. I N T R O D U C T I O N 2 

by at least 50% by 2050 compared to 2008 [30]. In the 76th session of MEPC in 2021, s e r - 
val mandatory measures were adopted to reduce greenhouse gas emissions from i n t e rn a t i o n a l 
shipping, which will help in achieving the goal of reducing emissions by 50% by 2050 [ 3 1 ] . 
One of the important measures is the Carbon Intensity Indicator ( C II ) . 

Maritime shipping is a complex and highly volatile system, generating very large d a t a 
sets. Big data analytics can be used to understand the complex system and make i n fo rm e d 
decisions. It can facilitate operations such as monitoring of emissions and predictive a n a l y s i s 
of vessel performance. This can help in reducing emissions and improving the efficiency o f 
the maritime sector [ 3 4 ] . 
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Figure 1.1: Emission trajectories for different levels of ambition for emission reduction t a r g e t s 

1.2 Big Data A n a l y s i s 

Big data analytics is where advanced analytic techniques operate on big data sets. Hence, b i g 
data analytics is really about two things- big data and a n a l y t i c s . 

1.2.1 Big D a t a 

As the name suggests, big data is a large amount of data. There are other important a t tr i b u t e s 
of big data. These are: data variety and data v e l o c i t y . 

Thus we can define big data using 3 V's: volume, variety, and velocity as showing in fi g ur e 
1. 2 . 

Beyond these three V's, Big Data is also about how complicated the computing problem i s . 
Given the number of variables and number of data points for analysing the maritime s h i p p i n g 
data. It is a very complicated problem. Thus, in addition to the three V's identified by IBM, i t 
would also be necessary to take complexity into account as shown in figure 1.3 [ 1 6 ] . 
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Figure 1.3: Big Data: Beyond 3 V's - volume, velocity, variety, and c o m p l e x i ty 

1.2.2 What is Big Data A n a l y t ic s ? 

Big data analytics is the process of examining large and varied data sets to uncover hidden p a t - 
terns, unknown correlations, market trends, customer preferences and other useful i n fo r m a t i o n 
that can help organizations make more-informed business d e c i s i o n s . 

Thus, Data analytics revolves around deriving valuable knowledge and meaningful i n s i g h t s 
from extensive sets of data. This process involves crafting hypotheses, often rooted in g a th e r e d 
experiences and uncovering correlations between variables, sometimes even through s e r e n d i p - 
itous discoveries. Data analytics can be classified into four distinct types [ 1 9 ] : 

1. Descriptive A n al y t ic s 

Descriptive analytics focuses on explaining past events and presenting them in a c o m p r e h e n s i - 
ble manner. The collected data is structured into visual aids like bar charts, graphs, pie c h ar t s , 
maps, and scatter diagrams, facilitating easy interpretation that offers insights into the d a t a ' s 
implications. This mode of data representation is often termed a dashboard, reminiscent o f 

����������������������������� 



CHAPTER 1. I N T R O D U C T I O N 4 

a car's dashboard that provides details such as speed, engine status, fuel levels, and d i s t a n c e 
traveled. A classic instance of descriptive analytics involves displaying population census d a t a , 
which categorizes a nation's population by gender, age brackets, education, income, p o p u l a - 
tion density, and similar criteria [ 1 9 ] . 

2. Predictive A n a l y t ic s 

Predictive analytics extends beyond existing data to forecast forthcoming events. It a n t i c i p a t e s 
what is likely to occur in the immediate future. Techniques like time series analysis u t i l i z i n g 
statistical methods, neural networks, and machine learning algorithms are employed for t h i s 
extrapolation. A significant application of predictive analytics is seen in marketing, where i t 
understands customer preferences and needs. For instance, when purchasing shoes online, a n 
advertisement for socks may appear. Another prevalent application is in orchestrating el e c - 
tion campaigns. This involves gathering diverse data, such as the demographics of voters i n 
different areas and their perceived needs like infrastructure and local concerns [ 1 9 ] . 

3. Prescriptive A n a l y ti c s 

This process detects opportunities for enhancing existing solutions by analyzing collected d a t a . 
Essentially, it guides us on the actions to undertake in order to accomplish a particular o b j e c - 
tive. An illustrative instance is observed in the aviation industry where airlines determine s e a t 
pricing through analysis of historical travel patterns, popular travel origins and d e s t i n a t i o n s , 
significant events, holidays, and more. This approach is employed to optimize profit g e n e ra - 
tion [ 1 9 ] . 

4. Exploratory or Discovery A n a l y ti c s 

This process uncovers unforeseen connections among variables within extensive datasets. T h e 
collection and analysis of data from diverse sources opens up new avenues for gaining i n s i g h t s 
and making serendipitous discoveries. One of its major applications involves the i d e n t i fi c a t i o n 
of patterns in customers' behavior by companies through sources like feedback, tweets, bl o g s , 
Facebook data, emails, and sales trends. By deciphering customer behavior, companies c a n 
potentially predict actions like renewing a magazine subscription, switching mobile p h o n e 
service providers, or canceling a hotel reservation. Armed with this information, c o m p a n i e s 
can devise appealing offers aimed at altering the anticipated course of action by the c u s t o m e r 
[ 1 9 ] . 

1.3 I n d i c a t o r s 

Indicators play a crucial role in assessing and monitoring carbon emissions in the m a r i t i m e 
shipping industry. They provide valuable insights into the environmental performance of v e s - 
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CHAPTER 1. I N T R O D U C T I O N 5 

sels, facilitate comparisons between different ships or fleets, and help track progress t o w a r d s 
emission reduction targets. By measuring various aspects of emissions and energy e f fi c i e n c y , 
these indicators enable stakeholders to identify opportunities for improvement and i m p l e m e n t 
effective strategies to mitigate the environmental impact of shipping o p e ra t i o n s . 

In this section, we will discuss several key indicators commonly used in the monitoring a n d 
evaluation of carbon emissions in maritime shipping. These indicators cover a range of fa c t o r s , 
including carbon intensity, energy efficiency, fuel consumption, and cargo transport w o r k. 
Each indicator offers a unique perspective on emissions, providing researchers, p o li c y m ak e r s , 
and industry stakeholders with valuable information to support decision-making and fo s t e r 
sustainable p ra c t i c e s . 

It is important to note that the selection and use of indicators may vary depending o n 
the specific research objectives, data availability, and regulatory frameworks in place. T h e 
combination of different indicators allows for a comprehensive assessment of emissions a n d 
enables a deeper understanding of the efficiency and environmental performance of s h i p p i n g 
a c t i v i t i e s . 

Below is the list of indicators discussed in this s e c t i o n : 

1. Carbon Intensity Indicator ( C II ) 

2. Energy Efficiency Operational Indicator ( E E O I ) 

3. Energy Efficiency Design Index ( E E D I ) 

4. Energy Efficiency eXisting ship Index ( E E X I ) 

1.3.1 Carbon Intensity Indicator ( C II ) 

The International Maritime Organization (IMO) has introduced a new carbon intensity ( C II ) 
measure for ships, which is a more accurate way to evaluate a vessel's environmental i m p a c t 
than total carbon emissions. CII is calculated using the Annual Efficiency Ratio (AER) fo r - 
mula, taking into account a ship's fuel consumption, CO2 emission factor, annual d i s t a n c e 
sailed, and design d e a d w e i g h t. 

To calculate CII in the most basic fo r m : 

C 
Carbon E m i s s i o n 

I 
Distance Travelled x Cargo C a p a c i t y 

(1 . 1 ) 

Vessels are rated A to E based on their CII results, and those with a D or E rating for t h r e e 
consecutive years or an E rating in one year must submit a corrective action plan. The I M O 
will enforce CII regulations for all ships over 5,000 GT and require an enhanced Ship E n - 
ergy Efficiency Management Plan (SEEMP) with CU-related content from January 2023. T h e 

�� 



CHAPTER 1. I N T R O D U C T I O N 6 

SEEMP must include the ship's required annual operational CII target and an i m p l e m e n t a t i o n 
plan to achieve it over the next three years. [ 2 ] . 

 Inferior boundary b o u n d a ry 

 Upper b o u n d a ry 

 Required C I I 

¥ j I Lower b o u n d a ry 

 Superior b o u n d a ry 

Figure 1.4: Schematic diagram of the CII ratings and boundaries. [ 2 9 } 

The article [21], discusses the increasing popularity of Energy and Carbon Intensity i n - 
dicators among policy makers, which are calculated as units of energy or mass of e mi s s i o n s 
per unit of Gross Domestic Product (GDP). These indicators are gaining momentum due t o 
support from think tanks, public organizations, consulting groups, and academics focused o n 
energy and climate change policy development. The ways in which intensity indicators ar e 
framed and perceived in public debates generated by these intermediaries are important a s 
they can influence policy making and the development of better sets of indicators to a s s e s s 
how well countries are addressing climate change and resource efficiency policies. I n t e n s i t y 
indicators are appealing for emerging economies as they are not incompatible with high ra t e s 
of economic growth and do not imply the imposition of absolute emission/energy c a p s . 

1.3.2 Energy Efficiency Operational Indicator ( E E O I ) 

The Energy Efficiency Operational Indicator (EEOI) is a tool used to measure the CO2 g a s 
emissions per unit of transport work, indicating the operational efficiency of a ship. The E E O I 
is calculated annually and is subject to changes after each voyage due to various e x t e rn a l 
factors, such as navigation conditions, sea area, weather, temperature, and cargo w e i g h t. 

The EEOI provides an accurate measure for each voyage, and its unit depends on the t y p e 
of cargo or transport work, such as tons CO2/(tons/nautical miles), tons C O 2 / ( T E U / n a u t i c a l 
miles), or tons CO2/(person/nautical miles). The formula for calculating the EEOI is r e p r e - 
sented by formula (1.2), where a lower value indicates a more energy-efficient ship [ 1 8 ] . 

0 
Carbon E m i s s i o n 

EEOI- .............................. 
Performed Transport W o r k 

For the calculation of EEOI for a specific voyage, formula (1.3) is u s e d . 

EEOI Z i l e r  C r 
c a r g o  • D ; 

(1 . 2 ) 

(1 . 3 ) 
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CHAPTER 1. I N T R O D U C T I O N 7 

However, when dealing with a large number of ships, formula (1.3) is expressed as e q u a t i o n 
(1.4), taking into account parameters such as fuel type, voyage number, fuel c o n s u m p t i o n , 
fuel-to-CO2 conversion factor, cargo weight, and distance traveled [ 2 8 ] . 

w h e r e : 

L L /( / c , C r ;) 
Averageµgor- ( ) ; meargo,i • D i 

j : Fuel type u s e d 

i : Navigation voyage n u m b e r 

F C ± ;  : Mass of consumed fuel j at voyage i 

CF; : Fuel mass to CO2 mass conversion factor with fuel j 

mcargo : Weight of cargo carried (tons) on s h i p 

D; : Distance of voyage i (nautical m i l e s ) 

(1 .4 ) 

The fuel-to-CO2 conversion factor (CF) is a non-dimensional factor that converts fuel c o n - 
sumption, measured in grams, to CO2 gas emissions, also measured in grams, based on t h e 
carbon content. The below t a b l e 

1.1 is showed the certain value of CF follows the type of fu e l. 

N o . Type of f u e l R e f e r e n c e Carbon c o n t e n t CF ( t - C O 2 / t - F u e l ) 
1 Diesel/ gas o il ISO 8217 Grades DMX through D M C 0 . 8 7 5 3 . 2 0 6 0 0 0 
2 Light fuel oil ( L F O ) ISO 8217 Grades RMA through RM D 0 . 8 6 3 . 1 5 10 4 0 
3 Heavy fuel oil ( H F O ) ISO 8217 Grades RME through RM K 0 . 8 5 3 . 11 4 4 0 0 
4 Liquefied petroleum gas ( L P G ) Propane, b u t a n e 0.819, 0 . 8 2 7 3.000000, 3 . 0 3 0 0 0 0 
5 Liquefied natural gas ( L N G ) 0 . 7 5 2 . 7 5 0 0 0 0 

Table I . I:  The value of CF (t-C02/t-Fuel) [ 2 8 ]. 

1.3.3 Energy Efficiency Design Index ( E E D I ) 

Energy Efficiency Design Index (EEDI) is a legislation proposed by the International M a r - 
itime Organization (IMO) to estimate the energy efficiency of ships and calculate their C O 2 
emissions per unit of transport work done during the ship design phase. EEDI is based o n 
a complex formula that takes into account the ship's emissions, capacity, and speed, and t h e 
lower the ship's EEDI index, the less CO2 emissions it p ro d u c e s . 

EEDI is a non-prescriptive mechanism that allows the shipping industry to use the l a t e s t 
technologies for designing commercial vessels as long as they meet the required energy e f fi - 
ciency levels and parameters. It lays down a minimum energy efficiency level, per c a p a c i t y 
mile, for different ship types and sizes, including tankers, bulk carriers, gas carriers, g e n e ra l 
cargo ships, container ships, refrigerated cargo carriers, and combination c a rr i e r s . 

������� 



CHAPTER 1. I N T R O D U C T I O N 8 

The EEDI formula has two components: attained EEDI and required EEDI. The a tt a i n e d 
EEDI is calculated using a complex formulation based on the vessel's emissions, capacity, a n d 
speed, while the required EEDI is the minimum level of energy efficiency that a ship m u s t 
meet as per its ship type and size. The attained EEDI is verified based on the ship's design a n d 
construction, and the required EEDI is the target that the ship must achieve during its o p e ra t i o n 
[ 2 0 ] . 

EEDI calculation module as part ofMarpol Annex VI, following the directive M E P C. 1 / C i r c . 6 8 1 
at the MEPC meeting conducted by the IMO in 2011. This regulation came into effect on Ja n - 
uary 1, 2013. The EEDI formula (Equation 1) specified by IMO (2011) is represented by t h e 
equation (1.5) [ 2 7 ] . 

P· S F C · C f 
E E D I -  ....._ 

DWT · V r e f 

w h e r e : 

P: 70% of the power of the engine (main and auxiliary) in k W 

SFC : Amount of fuel burned by the engines in kW (specific fuel c o n s u m p t i o n ) 

Cf : Emission rate of fuel used by the ship (presented in Table 1 ) 

D W T :  Ship's capacity (in t o n s ) 

Var : Speed of the ship (in k n o t s ) 

1.3.4 Energy Efficiency eXisting ship Index ( E E X I ) 

( 1. 5 ) 

The Energy Efficiency Existing Ship Index (EEXI) is a regulation introduced by the I n t e r - 
national Maritime Organization (IMO) aimed at improving the energy efficiency of e x i s t i n g 
ships. It is part of the broader effort to reduce greenhouse gas emissions from the s h i p p i n g 
industry and combat climate change. The EEXI is designed to complement the Energy E f fi - 
ciency Design Index (EEDI), which focuses on new ship designs [ 4 1 . 

The EEXI is part of a comprehensive framework that includes short-term, mid-term, a n d 
long-term measures. The short-term measures focus on technical and operational i m p ro v e - 
ments, such as retrofitting ships with energy-efficient technologies. The mid-term m e a s ur e s 
involve market-based mechanisms to incentivize emission reductions, while the l o n g - t e rm 
measures explore alternative fuels and propulsion systems [ 3 ] . 

The calculation of the Energy Efficiency Existing Ship Index (EEXI) can be optimized b y 
considering the ship's maximum continuous rating (MCR) at 100% capacity. This a p p ro a c h 
ensures that improvements in technical efficiency closely align with the ship's actual o p e ra - 
tional fuel use. By accounting for the engine power limits (EPLs) within the engine m a r g i n , 
which have minimal impact on ship operations, a more accurate assessment of energy e f fi - 
ciency can be achieved. Currently, the proposed calculation methods for the EEXI i n v o l v e 
using either 75% of the limited MCR (MCRlim), similar to the Energy Efficiency D e s i g n 
Index (EEDI), or a higher value of 87% MCRlim, which only considers the engine m a r g i n . 
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However, utilizing ship characteristics data from IHS Markit and applying the appropriate c a l - 
culation method, the attained EEXI score can still be estimated, providing valuable i n s i g h t s 
into a ship's energy performance [ 2 2 ]. 

Attained EEXT = 3.1144 MESFOC x Y[# Pus,± + AESF OC x P , e 
Capacity x V r e f 

(1 . 6 ) 

The estimation of the attained EEXI score using ship characteristics data from IHS M a r k i t , 
as outlined in Equation (1.6), contributes to a more comprehensive understanding of a s h i p ' s 
energy efficiency. This information supports decision-making processes related to o p t i m i z i n g 
operational fuel consumption, implementing retrofit measures, and promoting e n v i ro n m e n t a l 
sustainability in the maritime industry. By calculating the EEXI at 100% MCR, the a s s e s s m e n t 
takes into account the EPLs within the engine margin, which are not expected to s i g n i fi c a n t l y 
affect ship operations. This approach ensures that technical efficiency improvements are p ro p - 
erly aligned with the ship's actual operational fuel use, enabling informed decision-making fo r 
enhancing operational fuel consumption and reducing environmental impact. Through the u t i - 
lization of ship characteristics data and the appropriate calculation method, the attained E E X I 
score serves as a valuable tool for assessing energy efficiency and driving advancements in t h e 
maritime sector [ 2 2 ] . 

1.4 S e g m e n t s 

The maritime shipping industry encompasses many more segments, this thesis will s p e c i fi c a ll y 
focus on bulk carriers and tank c a r ri e r s . 

1.4.1 Bulk C a r r i e r s 

Bulk carriers are specialized vessels designed to transport unpackaged bulk cargo such a s 
grains, coal, ores, and cement. These vessels play a crucial role in global trade, ensuring t h e 
efficient and cost-effective movement of essential raw materials. Bulk carriers can be f ur t h e r 
categorized into several segments based on their size, design, and specific fu n c t i o n a li t y : 

• Supramax: A class of bulk carriers typically ranging from 50,000 to 60,000 d e a d w e i g h t 
tons (DWT), offering flexibility in port access and cargo h a n d li n g . 

• Aframax: Medium-sized vessels with a DWT of approximately 80,000, often used fo r 
short to medium-haul ro u t e s . 

• Handysize: Smaller vessels ranging from 15,000 to 35,000 DWT, ideal for a c c e s s i n g 
ports with size r e s t ri c t i o n s . 

• Handymax: Slightly larger than Handysize, with a DWT ranging from 40,000 to 5 0 , 0 0 0 . 
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• Panamax: Specifically designed to pass through the Panama Canal, Panamax bulk c a r - 
riers have a maximum DWT of around 8 0 , 0 0 0 . 

• Capesize: The largest bulk carriers, often exceeding 100,000 DWT, are named for t h e i r 
inability to traverse the Cape of Good Hope or Cape Horn, requiring them to n a v i g a t e 
around these c a p e s . 

1.4.2 Tank C a r r i e r s 

Tank carriers, also known as tanker ships, are designed to transport liquids such as c ru d e 
oil, petroleum products, and chemicals. These vessels play a vital role in the energy s e c t o r , 
connecting oil-producing regions with global markets. Tank carriers can be categorized i n t o 
several segments, i n cl u d i n g : 

• VLCC (Very Large Crude Carriers): Among the largest tank carriers, VLCCs t y p i - 
cally have a DWT ranging from 200,000 to 320,000 t o n s . 

• VLGC (Very Large Gas Carriers): Designed to transport liquefied petroleum g a s 
(LPG) and other gas products, with a capacity ranging from 70,000 to 85,000 c u b i c 
m e t e r s . 

1.5 Problem S t a t e m e n t 

Carbon emissions from maritime shipping have been identified as a major contributor to g l o b a l 
greenhouse gas emissions, with the International Maritime Organization estimating that s h i p - 
ping is responsible for around 3% of global CO2 emissions [13]. To address this issue, t h e 
shipping industry has set targets to reduce its carbon footprint, and governments and i n t e rn a - 
tional organizations have introduced policies and regulations to encourage emissions r e d u c - 
t i o n . 

However, measuring and monitoring carbon emissions from maritime shipping can be c h a l - 
lenging due to the complexity of the industry and the lack of reliable data. The Energy E f fi - 
ciency Operational Indicator (EEOI) and the Carbon Intensity Indicator (CII) have been p ro - 
posed as two metrics to assess the carbon efficiency of ships and enable comparison b e t w e e n 
different vessels and fleets [35, 3]. However, there is a need to better understand the r e l a t i o n - 
ship between EEOI and carbon emissions, as well as to identify the factors that influence t h i s 
m e t ri c s . 

This thesis aims to address this problem by leveraging big data analysis and detailed s h i p 
characteristics data to provide a more precise and holistic view of maritime shipping's c a r b o n 
footprint. By doing so, it seeks to enhance decision-making processes related to fuel o p t i m i z a - 
tion, retrofit measures, and environmental sustainability, contributing to a more r e s p o n s i b l e 
and efficient maritime i n d u s t ry . 
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1.6 Research Q u e s t i o n s 

This thesis will focus on answering following research q u e s t i o n s : 
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1. How to understand complexity of emissions with simple s y s t e m ? 

2. How does the categorization of vessels into different segments facilitate a more i n tr i c a t e 
examination of carbon e m i s s i o n s ? 

3. What are the factors affecting the carbon emissions of a v e s s e l ? 

4. Can the carbon emissions be reduced with cost effective and realistic m e a s ur e s ? 

1. 7 Report O u t li n e 

 T H E S I S  
Insights into M a r i t i m e 

s h i p p i n g ' s Carbon F o o t p r i n t 
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Figure 1.5: Thesis O u t l i n e 

Chapter 2: Literature Review: This chapter covers the background information and l i t e ra t ur e 
review of the thesis. this section covers comprehensive review of existing papers and r e s e ar c h 
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related to carbon emissions in maritime shipping. The aim is to provide a c o m p r e h e n s i v e 
overview of the current state of research in this field and identify any gaps or opportunities fo r 
further e x p l o ra t i o n . 

Chapter 3: Data Collection and Preprocessing: In this chapter, the focus will be on g a t h e ri n g 
and understanding the data required to perform analysis to understand emissions in m a r i t i m e 
shipping. Various data sources will be explored, including industry databases, research p u b - 
lications, and government reports. The aim is to acquire a comprehensive dataset that c o v e r s 
different aspects of carbon emissions in the maritime sector. Additionally, this chapter w ill 
delve into the intricacies of the collected data, understanding its structure, variables, and p o - 
tential limitations. Before conducting any data analysis, it is crucial to ensure the quality a n d 
integrity of the dataset. This chapter will discuss the steps involved in cleaning and p r e p ro - 
cessing the data. This process may involve handling missing values, dealing with o u t li e r s , 
standardizing formats, and resolving inconsistencies. By performing these necessary d a t a 
cleaning procedures, the dataset will be prepared for further analysis, ensuring reliable a n d 
accurate r e s u lt s . 

Chapter 4: Data Analysis Techniques: In this chapter, various data analysis techniques s p e c i fi c 
to big data will be explored and applied to the cleaned dataset. These techniques may i n cl u d e 
statistical analysis, machine learning algorithms, and data visualization methods. The goal is t o 
extract meaningful insights and patterns from the data to gain a comprehensive u n d e r s t a n d i n g 
of carbon emissions in maritime shipping. Additionally, this chapter will discuss the t o o l s 
and technologies utilized for data analysis and highlight any specific challenges e n c o u n t e r e d 
during the p ro c e s s . 

Chapter 5: Evaluation of Results: After performing the data analysis, this chapter will fo c u s 
on evaluating and interpreting the obtained results. The findings will be compared a g a i n s t 
existing literature, industry benchmarks, and regulatory standards to assess the s i g n i fi c a n c e 
and implications of the analysis. The strengths and limitations of the analysis approach will b e 
discussed, and recommendations for future research or practical applications will be p ro v i d e d . 
This chapter aims to provide a comprehensive evaluation of the insights gained from the d a t a 
analysis and their potential impact on the maritime shipping i n d u s t ry . 

Chapter 5: Conclusion: The conclusion chapter will summarize the key findings and c o n t ri - 
butions of the thesis. It will highlight the significance of the conducted big data analysis o n 
emissions in maritime shipping and its implications for sustainability and environmental i n i - 
tiatives. The conclusion will also discuss any potential limitations or challenges e n c o u n t e r e d 
during the research and suggest avenues for further exploration in this fi e l d . 
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Chapter 2 

Literature R e v i e w 

In response to the urgent need to reduce carbon emissions and combat climate change, r e - 
searchers and industry stakeholders have focused on developing and implementing s t ra t e g i e s 
to reduce carbon emissions in maritime s h i p p i n g . 

Figure 2.1 shows that the number of publications on energy efficiency and emission r e d u c - 
tion in the maritime industry has grown exponentially since 2016. The number of p u b l i c a t i o n s 
from 2006 to 2015 was 76, while from 2016 to 2021, there were 260 publications, i n d i c a t i n g 
a significant increase in interest in decarbonization in the maritime industry. [ 1 1 ] 
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Figure 2.1: Number of publications per year in energy efficiency and emission reduction in the m a r i t i m e 
d o m a i n 

One promising area of research is the use of big data analysis to measure and im p ro v e 
carbon efficiency in maritime shipping. Big data analysis involves the collection and a n a l y s i s 
of large and complex data sets to identify patterns, trends, and insights. In the context o f 
maritime shipping, big data analysis can be used to measure carbon emissions and i d e n t i f y 
opportunities for i m p ro v e m e n t. 

The purpose of this literature review is to examine the current state of research on c ar b o n 
emissions in maritime shipping, with a focus on the Energy The Energy Efficiency e X i s t i n g 
ship Index (EEXI) and Carbon Intensity Indicator (CII) as key metrics for measuring c ar b o n 
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efficiency. The review will provide an overview of the current state of research on these m e t - 
rics, their strengths and limitations, and their relevance for the maritime shipping i n d u s t r y . 

The review will begin by exploring the importance of reducing carbon emissions in m a r - 
itime shipping and the regulatory and policy frameworks that have been established to a d d r e s s 
this issue. It will then provide an overview of the EEXI and CII metrics, including their d e fi - 
nitions, methodologies for calculating them, and their role in measuring carbon e f fi c i e n c y . 

The literature review will also examine the current research on the relationship b e t w e e n 
EEXI, CII, and carbon emissions in maritime shipping, with a particular focus on the use o f 
big data analysis to measure and improve carbon efficiency. It will explore the potential fo r 
big data analysis to provide more accurate and comprehensive data on carbon emissions, a n d 
to identify opportunities for operational and technological i m p ro v e m e n t s . 

Overall, this literature review will provide a comprehensive overview of the current state o f 
research on carbon emissions in maritime shipping, with a focus on the EEXI and CII m e t r i c s 
and the potential for big data analysis to guide and inform strategies for improving c a r b o n 
efficiency in the i n d u s t r y . 

Review by Issa, Ilinca, and Martini [9] shows that Maritime shipping is a crucial aspect o f 
global trade and the global economy, with over 85% of the volume of global trade in g o o d s 
transported by sea. However, maritime transport also has significant environmental i m p a c t s , 
including carbon emissions. Approximately 3.3% of the world's carbon dioxide (C02) e m i s - 
sions are attributable to maritime transport, with emissions from marine diesel oil ( M D O ) , 
marine fuel oil (MFO), and heavy fuel oil (HFO) all contributing to the problem. R e d u c i n g 
carbon emissions in the maritime shipping industry is a significant challenge, but there are a 
range of strategies that can be used to achieve this goal. Alternative fuels, energy e f fi c i e n c y 
improvements, and operational measures all have the potential to reduce emissions, but t h e y 
also have significant economic and resource c o n s t ra i n t s . 

Paper by Grzelakowski, Herdzik, and Skiba [7] mentions that Despite its significant c o n - 
tribution to global economic growth, maritime transport also generates negative e x t e rn a li t i e s , 
primarily in the form of greenhouse gas (GHG) emissions. They discus how digitalization a n d 
the use of artificial intelligence (Al) are being explored as potential ways to reduce e m i s s i o n s 
in maritime shipping. AI algorithms can optimize shipping routes, reduce fuel c o n s u m p t i o n , 
and minimize emissions. Additionally, digitalization can enable better data collection a n d 
analysis, which can facilitate more accurate emissions reporting and m o n i t o r i n g . 

According to Kao, Chung, and Chen [12], the use of automatic identification system ( A I S ) 
to estimate ship emissions, which is an advantage due to the system's ability to provide r e a l - 
time navigational information. Studies have been conducted utilizing AIS data to estimate s h i p 
emissions in different regions, such as Hong Kong and the Pearl River Delta, Las Palmas P o r t , 
Qingdao Port, Tianjin port, Naples port, and unidentified vessels with missing ship p a ra m e t e r s . 
The studies have focused on macro-scale spatial and temporal resolution, high-resolution s h i p 
emission inventory, high temporal-spatial ship emission inventory, higher spatial-temporal r e s - 
olution, and real-time ship emission monitoring. It proposes simulation model based on A I S 
data, specification and what-if scenarios as shown in Figure 2 . 2 
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Figure 2.2: Simulation f r a m e w o r k 

Research by Sou et al. [24], discusses the need for carbon intensity indicators (Clls) as p e r - 
formance monitoring tools in the shipping industry, particularly for tracking energy e f fi c i e n c y 
trends and progress towards climate targets. The review highlights the lack of consensus o n 
suitable Clls, as proposed by various countries to the International Maritime O r g a n i z a t i o n 
(IMO), and the need for a more comprehensive understanding of global progress towards c ar - 
bon intensity targets from both demand and supply side indicators. The study aims to a d d r e s s 
this issue by analyzing Clls for shipping and the factors that influence the carbon intensity o f 
shipping at the global level. Index decomposition analysis (IDA) is used to quantify the c o n - 
tribution of various factors, including energy efficiency, to changes in carbon intensity fr o m 
2012 to 2 0 1 8 . 

According to report by Stevenson [26], The International Maritime Organization will i n - 
troduce Energy Efficiency eXisting ship Index (EEXI) and Carbon Intensity Indicator ( C II ) 
regulations in 2023 as part of the wider decarbonization goals for shipping. More than t h r e e - 
quarters of the existing fleet will not initially meet EEXI baselines and will need to take a c t i o n 
to achieve compliance, with overridable engine power limitations (oEPL) expected to be a 
popular option. However, the effect on vessel operations over a year will be quite small d u e 
to the relatively small number of hours where steaming speeds would exceed oEPL l i m i t s . 
The compliance with EEXI can result in modest improvements in AER, CII, and annual C O 2 . 

e m 1 s s 1 0 n S . 

The International Maritime Organization (IMO) has made maritime decarbonization a p r i - 
ority, setting targets to reduce greenhouse gas emissions from ships. To achieve these t ar - 
gets, the IMO has adopted mandatory measures, including the carbon intensity indicator ( C I D ) , 
which measures carbon emissions per unit transport work for each ship. But Wang, P s ar a f t i s , 
and Qi [32] argues there are potential paradoxes with the CII, as it may increase carbon e m i s - 
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Figure 2.3: EEXI BULKER ESTIMATES VS. 2023 B A S E LI N E 

sions in some situations. There are at least four potential versions of the CII, including s u p p l y - 
based, demand-based, distance-based, and sailing time-based, but the IMO has not yet a g r e e d 
on which to use. More elaborate models and indicators should be developed to analyze t h e 
potential impacts of the CII and achieve utmost carbon emissions r e d u c t i o n . 

In "Big data and artificial intelligence in the maritime industry: a bibliometric r e v i e w 
and future research directions" [15], author Munim et al. explains how Big data and ar t i fi c i a l 
intelligence (Al) have become essential components of data-driven decision-making in m o s t 
industries. However, the maritime industry still relies on intuition more than on data, m a i n l y 
because of the vast size of its network and planning problems. The maritime industry g e n e ra t e s 
large amounts of data that, if appropriately utilised in decision-making, can improve m ar i t i m e 
safety, reduce environmental impacts, and minimise cost. In this review, we focus on s t u d i e s 
that deal with big data and AI applications within the maritime context to map the c o n c e p t u a l 
structure of the field and identify future research avenues. AIS data to investigate the impact o f 
speed reduction on fuel consumption and carbon emissions in the shipping industry. The s t u d y 
found that a 10% reduction in ship speed could result in a 17% reduction in fuel c o n s u m p t i o n 
and a corresponding reduction in carbon emissions. The authors suggested that reducing s h i p 
speed is an effective way to reduce fuel consumption and carbon emissions in the m ar i t i m e 
i n d u s t ry . 

The study by Acomi and Acomi [ l ] ,  delves into the realm of maritime e n v i ro nm e n t a l 
conservation, emphasizing the Energy Efficiency Operational Index (EEOI) as a pivotal t o o l. 
Addressing concerns of marine pollution encompassing water and air aspects, the paper u n d e r - 
scores international efforts for emission reduction in shipping. The EEOI, designed to m e a - 
sure carbon emissions per unit of transport work, aids ship-owners and operators in e n h a n c i n g 
energy efficiency during operational voyages. The research demonstrates how c o mm e r c i a l 
software and a custom-developed program estimate EEOI values pre-voyage and onboard, r e - 
vealing the influence of unpredictable factors on energy efficiency. This analysis not o n l y 
showcases the EEOI's significance in curbing emissions but also highlights its vital role in t h e 
broader context of maritime sustainability and environmental p ro t e c t i o n . 

In conclusion, the literature reviewed emphasizes the importance of addressing the s i g - 
nificant environmental impact of carbon emissions in the maritime shipping industry. W h i l e 
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Big data and Al applications in m a r i t i m e 

Figure 2.4: Application of Big dada and AI in maritime i n d u s t ry 

1 7 

there are various strategies to reduce emissions, such as alternative fuels, energy e f fi c i e n c y 
improvements, and operational measures, they have significant economic and resource c o n - 
straints. Digitalization and the use of artificial intelligence (Al) are being explored as p o t e n t i a l 
ways to reduce emissions by optimizing shipping routes, reducing fuel consumption, and m i n - 
imizing emissions. Furthermore, the use of automatic identification system (AIS) data c a n 
facilitate real-time emissions monitoring, while carbon intensity indicators (Clls) can be u s e d 
as performance monitoring tools. The International Maritime Organization (IMO) has m a d e 
maritime decarbonization a priority by setting targets to reduce greenhouse gas emissions fr o m 
ships and introducing regulations like EEXI and CII. However, potential paradoxes with t h e 
CII and lack of consensus on suitable Clls highlight the need for more elaborate models a n d 
indicators to achieve utmost carbon emissions reduction. Big data and AI applications h a v e 
the potential to improve maritime safety, reduce environmental impacts, and minimize c o s t s . 
Overall, more research is needed to address the challenges of monitoring and reducing c ar b o n 
emissions in the maritime shipping industry while meeting global trade d e m a n d s . 
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Chapter 3 

Data Acquisition and P r e p r o c e s s i n g 

Data collection and understanding play a pivotal role in extracting meaningful insights a n d 
deriving accurate conclusions. The success of any analytical endeavor heavily relies on t h e 
quality, comprehensiveness, and relevance of the data used. In the case of carbon emissions i n 
maritime shipping, gathering and understanding the data is crucial for capturing the i n t r i c a c i e s 
of this complex domain. By exploring various data sources from industry databases, a c o m - 
prehensive dataset can be acquired, encompassing diverse dimensions of carbon emissions i n 
the maritime sector. Furthermore, understanding the structure, variables, and limitations o f 
the collected data is essential for ensuring the validity and reliability of subsequent a n a l y s e s . 
This includes examining the completeness of data, identifying any biases or data gaps, a n d 
verifying the accuracy of measurements. Ultimately, a thorough and informed u n d e r s t a n d i n g 
of the data sets the foundation for conducting rigorous data analysis and generating a c t i o n a b l e 
insights for addressing carbon emission challenges in maritime s h i p p i n g . 

Collaboration with Astrup Fearnleys has been instrumental in enhancing my research o n 
carbon emissions in maritime shipping. As a leading firm in the maritime shipping i n d u s t r y , 
their expertise and industry connections have provided me with invaluable support and a c c e s s 
to crucial datasets. Specifically, through their collaboration, I was able to gain access to t w o 
significant datasets: Automatic Identification System (AIS) data and IHS dataset. C o ll a b o ra t - 
ing with Astrup Fearnleys Code and leveraging their industry expertise has not only p ro v i d e d 
me with valuable datasets but also allowed me to gain insights into the complex dynamics o f 
the maritime shipping i n d u s t r y . 

1 8 
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3.1 IHS Markit d a t a s e t 

The IHS Markit dataset provides valuable vessel specification data for big data analysis i n 
maritime shipping. This dataset offers comprehensive information on vessel c h ar a c t e ri s t i c s , 
including dimensions, tonnage, engine capacity, and ownership. By leveraging this d a t a s e t , 
researchers can gain insights into the diverse specifications of vessels operating in the m ar i t i m e 
i n d u s t ry . 

Analyzing vessel specifications from the IHS Markit dataset allows for a deeper u n d e r - 
standing of the maritime shipping landscape. Researchers can explore correlations b e t w e e n 
vessel characteristics and various factors such as fuel efficiency, cargo capacity, or o p e ra t i o n a l 
performance. These insights can aid in optimizing vessel selection, fleet management, a n d 
decision-making processes related to vessel o p e ra t i o n s . 

By utilizing the vessel specification data from the IHS Markit dataset, this research c o n - 
tributes to enhancing operational efficiency and optimizing vessel-related decisions in the m ar - 
itime shipping industry. This dataset equips this research to identify trends and patterns in t h e 
maritime shipping industry related to vessel characteristics. This comprehensive dataset s e rv e s 
as a robust foundation for my research, enabling me to draw meaningful conclusions and m a k e 
data-driven recommendations for the future of the i n d u s t r y . 
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Figure 3.1: Vessel Specification Sheet [10 J 
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CHAPTER 3. DATA ACQUISITION AND P R E P R O C E S S I N G 

3.2 The Automatic Identification System (AIS) d a t a s e t 

2 0 

AIS (Automatic Identification System) was developed in the 1990s to enhance n a v i g a t i o n 
safety and prevent ship collisions. It allows ships equipped with AIS to communicate w i t h 
each other and coastal authorities through VHF transmissions. The International M ar i t i m e 
Organization (IMO) mandates that all international voyage ships above 300 gross tonnage a n d 
all passenger ships must have an AIS transmitter. Governments and authorities in d i ff e r e n t 
nations also enforce AIS applications to improve safety and s e c ur i t y . 

  Ship to s h i p 

  Ship to s hor e 

  Ship to sa t e l l i t e 

Figure 3.2: Working of A I S 

There are two types of AIS transceivers: Class A and Class B. Class A transceivers b ro a d - 
cast more data fields and have higher reporting frequencies. The information b ro a d c a s t e d 
by a Class A transceiver can be categorized into static information, dynamic i n fo rm a t i o n , 
and voyage-related information. Dynamic information is automatically transmitted every 2 - 10 
seconds when the ship is underway and every 3 minutes when anchored. Static and v o y a g e - 
related information are broadcasted every 6 minutes regardless of navigational status. Class B 
transponders transmit a reduced set of data and have sparser reporting intervals compared t o 
Class A t ra n s p o n d e r s . 

Data fi e l d T y p e D e s c r i p t i o n 
AIS identity and l o c a t i o n S t a t i c Maritime Mobile Service Identity (MMSI) a n d 

the location of the system's antenna on b o ar d 
Ship i d e n t i t y S t a t i c Ship name, IMO number, type, and call sign o f 

the s h i p 
Ship s i z e S t a t i c Length and width of the s h i p 
Ship p o s i t i o n D y n a m i c Latitude and longitude (up to 0.0001 min a c c u - 

ra c y ) 
S p e e d D y n a m i c Ranging from O knot to 102 knots (0.1 knot r e s - 

o l u t i o n ) 
Rate of t u rn D y n a m i c Right or left (ranging from O t o 720° p e r 

mi n u t e ) 
Times t a m p D y n a m i c Timestamp of the message in U T C 

Table 3.1: AIS message data fields [ 17 J 

Table 3.1 shows the data fields transmitted by AIS messages. Combining AIS data w i t h 
other databases can provide additional information. For example, port-to-port average s p e e d 
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can be calculated based on voyage distance and time stamps reported at the two ports. C a r g o 
weight can be estimated using draught and ship sizes. Technical ship specifications, such a s 
DWT (deadweight tonnage), capacity, design speed, and design draught, can be obtained fr o m 
fleet databases using the IMO number. Port-to-port bunker consumption can be e s t i m a t e d 
based on speed, distance, and technical ship specifications like DWT and capacity [ 3 3 ] . 

3.3 AIS Trade Flow S y s t e m 

AIS Trade Flow systems utilize data transmitted by vessels worldwide to furnish both re a l - 
time and historical insights into maritime trade operations [8]. The primary aim is to e s t a b l i s h 
a framework that delineates trade activities between ports, leveraging AIS signals. D e s i g n a t - 
ing port areas within AIS Trade Flow systems is a multifaceted undertaking e n c o m p a s s i n g 
geographical and operational factors. From a geographical perspective, a port area is t y p i c a ll y 
demarcated by a set of coordinates outlining the physical confines of the port and its a d j a - 
cent waters. This encompassing region might encompass berths, anchorages, and at t im e s , 
even approach channels. Identifying whether a ship resides within a port area often n e c e s - 
sitates comparing its current AIS-reported coordinates with the established port b o u n d ari e s . 
Should the ship's location fall within these boundaries, it's deemed situated within the p o r t 
area. Nonetheless, the analysis transcends mere geographical coordinates. For instance, a s h i p 
might exist within a port's geographical bounds; however, if it's merely passing through w i t h - 
out halting or participating in port operations, it might not qualify as being 'in port' from a n 
operational s t a n d p o i n t. 

Addressing these intricacies, AIS Trade Flow systems frequently employ advanced a l g o - 
rithms to precisely ascertain port boundaries and classify vessel conduct. This a s s e s s m e n t 
takes into account parameters like the vessel's velocity, heading, and historical b e h a v i o ra l 
trends. Through the integration of these diverse data facets, these systems can render an e x - 
ceptionally precise portrayal of port undertakings and vessel trajectories. AF Code has c o n - 
structed such a system by adhering to overarching principles, resulting in the creation of a 
dataset incorporating AIS signals alongside information about port visits, cargo loading, a n d 
u n l o a d i n g . 

- 30 

• v l o c 

45I 
• c a p e s i z e 
• p a n a m a x 
• s u p r a m a x 

 % O 3 0 

L o n a i t u d e 

Figure 3.3: Tradefiowfrom 150,000AIS sampled s i g n a l s . 
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To achive this, the AIS data is processed to identify port-to-port voyages and then s t o r e d 
them in a database based on segments as shown in the Figure 3 . 4 

$ - I l @ 
 

 3 i  
 3 

AIS raw data p r o v i d e r Azure D a t a fa c t o r y Azure Blob S t o r a g e D a t a b r i c k s Trade T a b l e 

Figure 3.4: AIS Raw Data P ro c e s s i n g 

3.3.1 Vessel V o y a g e s 

Trade flow systems are designed to identify port-to-port voyages. Each of this voyages is e i th e r 
Laden voyage or Ballast voyage from one port to another. At port vessel can load or u n l o a d 
cargo or just refuel and continue to another port. It is important to determine port stops a n d 
port area to identify the type of voyage. This section will describe how these voyages ar e 
identified and cl a s s i fi e d . 

Laden V o y a g e s 

The laden voyage concept centers on cargo movement, distinct from the vessel's own t ra v e r s a l. 
This characterization holds particular significance in evaluating logistical chains and c a r g o 
dynarnics within maritime transportation. A laden voyage pertains to the route spanning fr o m 
the cargo's loading point at the departure port to its unloading point at the arrival p o r t. 

Ballast V o y a g e s 

The ballast voyage concept centers on the vessel's movement without cargo, contrasting w i t h 
its movement when laden. A ballast voyage is characterized as the route from the port of c a r g o 
unloading, serving as the departure port, to the port of cargo loading, functioning as the arr i v a l 
p o r t. 

3.3.2 Port Stop and Port A r e a 

The initial key phase involves obtaining the coordinates of the targeted port and s u b s e q u e n tl y 
establishing a polygon encompassing its vicinity. The overarching approach revolves ar o u n d 
quantifying unique visits within this polygon, using a geo-fence strategy. Given the u t i l i z a - 
tion of S-AIS data, there exist temporal intervals during which satellites may not receive s h i p 
messages due to blind zones. This introduces the potential for ships to enter and exit the d e s - 
ignated port area without satellite detection. To mitigate this, a larger polygon around the p o r t 
can decrease the likelihood of overlooked visits. However, such an expansive polygon c o u l d 
result in the inclusion of vessels merely passing through, particularly if the port is p o s i t i o n e d 
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near a major shipping route. Hence, the ideal polygon size is contingent on the port's l o c a t i o n , 
it should be sizable enough to capture all visits yet sufficiently compact to exclude vessels i n 
transit. This is illustrated by Figure 3.5, showcasing LNG terminals in Trinidad and A l g e ri a 
enclosed by identical polygons. Visual inspection reveals message flow towards the port i n 
Trinidad (5.4a) and a substantial portion of vessel flow bypassing the port in Algeria ( 5 .4 b ) . 
Additionally, supplementary criteria like capping maximum speed and requiring n a v i g a t i o n a l 
statuses of anchored or moored can be incorporated to ensure vessels are genuinely e n g a g e d 
in loading activities [ 8 ] . 

(a) Trinidad LNG receiving t e r m in al (b) Algeria LNG export t e r m in al 

Figure 3.5: Port A r e a 

By using the trade flow system described in this section, we can figure out the trades m a d e 
by ships in 2022. If we assume that these ships will continue with the same trading patterns i n 
2023, we can use the trade data to make an estimate of emissions for 2 0 2 3 . 



Chapter 4 

Tools and Data Analysis T e c h n i q u e s 

In this section, we will use trade flow data for the year 2022, along with specifications fr o m 
the IHS dataset, to perform data a n a l y s i s . 

4.1 T o o l s 

To perf orm data analysis, we will utilize the following t o o l s : 

• P y t h o n 

• D a t a b ri c k s 

• Apache S p a r k 

• M S S Q L 

• P a n d a s 

• Astrup Fearnleys Code Emission Calculator A P I 

4.1.1 D a t a b r ic k s 

Databricks is a leading platform for big data analysis, specifically designed to h a n d l e 
large-scale datasets efficiently and effectively. Leveraging Apache Spark as its core e n g i n e , 
Databricks provides a distributed computing framework that enables processing massive v o l - 
urnes of data in parallel across multiple nodes. This distributed architecture allows for s i g n i f - 
icant performance improvements, reducing the time it takes to process and analyze big d a t a 
compared to traditional approaches. With its ability to handle both batch and real-time d a t a 
processing, Databricks empowers data engineers and analysts to extract valuable insights fr o m 
vast datasets, enabling them to make data-driven decisions at s c a l e . 

2 4 
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One of the key advantages of using Databricks for big data analysis is its ease of u s e 
and collaborative features. The platform offers interactive notebooks (Figure 4.1) that a ll o w 
data professionals to write, execute, and share code seamlessly. This enables c o ll a b o ra t i v e 
data exploration and simplifies the iterative process of data analysis and model d e v e l o p m e n t. 
Moreover, Databricks provides a rich set of built-in libraries and integrations with popular b i g 
data tools and machine learning frameworks, streamlining the development and d e p l o y m e n t 
of complex data pipelines and advanced analytical models. By abstracting the c o m p l e x i t i e s 
of distributed data processing, Databricks empowers data teams to focus on the analysis a n d 
interpretation of results, accelerating the time-to-insight for big data projects and u lt im a t e l y 
driving business growth and innovation. One of the key benefits of using Databricks for b i g 
data analysis is its ability to handle large volumes of data with ease. Whether you're w o r k i n g 
with terabytes, petabytes, or even exabytes of data, Databricks can scale to meet your n e e d s 
without sacrificing performance or reliability. This makes it an ideal solution for o r g a n i z a t i o n s 
looking to perform complex big data analysis tasks, such as machine learning, data w ar e h o u s - 
ing, and real-time streaming analytics [ 5 ] . 

Microsoft  Azure  databricks Q Search data, notebooks, recents, and m o r e . . . 

1 vlccImoQuery = s p a r k . >  ( f ' 

v l c c . t r a d e t a b l e l 3 b x 

P y t h o n -  X 

Refreshed 18 minutes a g o 

pTheHulk  A) f.thobhani@fearnleys.com  

  Interrupt • Freddy's Cluster v I S h a r e 

111cc. t ra d e t a b l e l 3 b x ; 

s e g m e n t 

v l c c =  v l c c I m o Q u e r y . t o P a n d a s ( ) 

s t a r t D a t e  = 2 0 2 2 - 0 1 - 0 1 ' 

6 9 9 4 1 6 6 1 

4 9 9 3 3 5 5 9 

3 9 8 3 0 8 1 2 

9 5 3 4 0 0 4 

9 5 0 0 7 3 0 

( i m o ) 

 949 rows I 1.96 seconds r u n t i m e 

 (3) Spark J o b s 

0 SOL cell result stored as PySpark data frame _ s q l d f 

theisis_CII Python v 

File Edit View Run Help Last edit.was 1 5 m i n u t e s  ago Provide f e e d b a c k 

M a r k e t p l a c e 

S e r v i n g 

E x p e r i m e n t s 

Delta Live T a b l e s 

Query H i s t o r y 

SQL E d i t o r 

C o m p u t e 

{[  w o r k s p a c e 

@ N e w 

Figure 4.1: Databricks N o t e b o o k 

Overall, Databricks is a highly capable platform for big data analysis that is well-suited t o 
a wide range of use cases, from simple data processing tasks to complex machine learning a n d 
statistical a n a l y s i s . 

The entire analysis will be conducted on Databricks with the following c o n fi g u ra t i o n : 

• Databricks Runtime Version: 11.3 LTS (includes Apache Spark 3.3.0, Scala 2 . 1 2 ) 

• 8GB Memory, 4 Cores with 1 driver and 1 worker n o d e . 

• Python 3 

• Elastic D i s k 
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Compute > UI preview Provide f e e d b a c k 

Freddy's Cluster   
Configuration Notebooks (1) Libraries Event log Spark UI Driver logs Metrics Apps Spark cluster Ul - Master  

Policy  

2 6 

More ·- Terminate - 

U n r e s t r i c t e d 

0 Multi node O Single n o d e 

Access mode  Single user access  

Single u s e r 

S u m m a r y 
1 W o r k e r 

1 D ri v e r 

8 GB M e m o r y 

4 C o r e s 

8 GB Memory, 4 C o r e s 

P e r fo r m a n c e 
Databricks Runtime V e r s i o n 

11.3 LTS (includes Apache Spark 3.3.0, Scala 2 . 1 2 ) 

Use Photon Acceleration O 

Worker type O Workers C u r r e n t 

Runtime 11.3.x s c a a ? . 1 2 

E  

S t a n d a r d _ F 4 

Driver ty p e 

S t a n d a r d _ F 4 

Enable autoscaling @ 

 Terminate after 6 0 

8 GB Memory, 4 Cores 1 Spot instances  

8 GB Memory, 4 C o r e s 

minutes of inactivity 0 

Figure 4.2: Databricks C o n fi g u ra t i o n 

4.1.2 Apache S p a r k 

Apache Spark is an open-source distributed computing framework designed for p ro c e s s i n g 
and analyzing large-scale datasets in a highly efficient and parallel manner. It provides a u n i - 
fied platform that supports various data processing tasks, including batch processing, r e a l - t i m e 
streaming, machine learning, and graph processing. Spark's core abstraction is a resilient d i s - 
tributed dataset (RDD), which allows data to be distributed across multiple nodes in a cl u s t e r , 
enabling data processing operations to be executed in parallel [ 2 5 ] . 

Databricks leverages Apache Spark as its underlying engine to offer a powerful and s c a l - 
able data analytics platform. By integrating Spark into its infrastructure, Databricks p ro v i d e s 
users with a seamless and interactive environment for collaborative data engineering and d a t a 
science tasks. Databricks' interactive notebooks allow data professionals to write and e x e c u t e 
Spark-based code, making it easier to perform data manipulations, transformations, and a n a l - 
ysis in real-time. The platform also offers support for various programming languages such a s 
Python, Scala, R, and SQL, providing users with flexibility and familiarity in their p r e f e rr e d 
l a n g u a g e . 

Furthermore, Databricks enhances Apache Spark by providing additional features and o p - 
timizations to improve performance and ease of use. The platform offers auto-scaling c a p a - 
bilities, enabling resources to be automatically allocated and released based on the w o r k l o a d 
demand, ensuring optimal performance and cost-efficiency. Databricks also provides b u i lt - i n 
libraries and tools that simplify complex tasks such as machine learning and data v i s u a l i z a t i o n , 
allowing data scientists to focus on building and deploying advanced analytical models w i t h 
e a s e . 

In summary, Apache Spark forms the backbone of Databricks, enabling the platform t o 
handle large-scale datasets efficiently and deliver a collaborative and user-friendly e n v i ro n - 
ment for data analysis, making it a popular choice for organizations seeking to harness t h e 
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potential of big data a n a l y t i c s . 

Soon Spark Master at s p a r k: / / 1 0. 1 3 9. 6 4. 4 : 7 0 7 7 
3 . 3 . 0 

URL: s p a r k : / / 1 0 . 1 3 9 . 6 4 . 4 : 7 0 7 7 

Alive Workers: 1 
Cores in use: 4 Total, 4 U s e d 

Memory in use; 3.9 GiB Total, 3.1 GiB U s e d 

Resources in u s e : 

Applications: 1 Running, 0 C o m p l e t e d 

Drivers: 0 Running, 0 C o m p l e t e d 

Status: A LI V E 

 Workers ( 1 ) 

2 7 

Open in new t a b 

Worker I d 

w o r k e r - 2 0 2 3 0 72 3 1 7 1 1 4 9 - 1 0 . 1 3 9 . 6 4 . 5 - 3 6 5 3 3 

Running Applications ( 1 ) 

A d d r e s s 

1 0 . 1 3 9 . 6 4 . 5 1 3 6 5 3 3 

S t a t e C o r e s M e m o r y 

3.9 GiB (3.1 GiB U s e d ) 

R e s o u r c e s 

ALIVE 4 (4 U s e d ) 

Application I D 

a p p - 2 0 2 3 0 72 3 1 7 1 1 4 6 - 0 0 0 0 

Completed Applications ( O ) 

N a m e Cores Memory per E x e c u t o r 

3 1 5 7 

Resources Per E x e c u t o r Submitted T i m e User S t a t e D u r a t i o n 

(kill) Databricks Shell 4 2023/07/23 17:11:46 root RUNNING 1.4 h 

Application I D Name C o r e s Memory per E x e c u t o r Resources Per E x e c u t o r Submitted T i m e User State D u r a t i o n 

4 . 1. 3 

Figure 4.3: Apache Spark C o n fi g u ra t i o n 

Astrup Fearnleys Code Emission Calculator A P I 

Astrup Fearnleys Code Emission Calculator API is a service that provides a simple i n t e r fa c e 
for calculating the emissions of a given vessel. The API is built on top of the Astrup F e ar n - 
leys Code Emission Calculator, It is internal tool developed to provide a simple interface fo r 
calculating the emissions of a given vessel for r e s e ar c h e r s . 

It requires the following parameters to be passed as a i n p u t: 
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4 

10 

I I 

P a r a m e t e r T y p e D e s c r i p ti o n 
1 m o i n t e g e r IMO of a ship that will require emission c a lc u - 

l a t i o n s . 
a v g _ s p e e d _ kn n u m b e r The vessel's intended average sailing speed i n 

knots on the ro u t e . Optional if duration_h i s 
g i v e n . 

d i s t a n c e _ nm n u m b e r Expected length of the voyage in Nau tic a l 
M i l e s . 

c ar g o _ u n i t s t ri n g Cargo unit used to submit c a r g o _ a m t. C ur - 
rently, the only possible value is tons. Used t o 
calculate EEOI and transport_ w o r k . 

c ar g o _ a m t n u m b e r Amount of cargo the ship is carrying (in t h e 
given cargo_unit). Used to calculate EEOI a n d 
transport_ w o r k . 

m e _ fu e l_ t y p e s t ri n g Fuel type to be considered for the main e n g i n e 
consumption for the emissions estimate. O v e r - 
writing the model a s s u m p t i o n . 

a e _ fu e l_ t y p e s t ri n g Fuel type to be considered for the auxiliary e n - 
gine consumption for the emissions e s t i m a t e . 
Overwriting the model a s s u m p t i o n . 

b o i l e r _ fu e l_ t y p e s t ri n g Fuel type to be considered for the boiler c o n - 
sumption for the emissions estimate. O v e r w ri t - 
ing the model a s s u m p t i o n . 

d u ra t i o n _ h n u m b e r Expected duration of the voyage in hours. O p - 
tional if avg_speed_kn is g i v e n . 

l o a d _ c o n d s t ri n g Loading condition of the vessel to be c o n s i d - 
erect in the power e s t i m a t i o n . 

m e - c o 2 _ fa c t o r n u m b e r CO2 factor for the main engine fuel. Main e n - 
gine fuel type must be s p e c i fi e d . 

a e _ c o 2 _ fa c t o r n u m b e r CO2 factor for the auxiliary engine fuel. A u x - 
iliary engine fuel type must be s p e c i fi e d . 

b o i l e r _ c o 2 _ fa c t o r n u m b e r CO2 factor for the boiler engine fu e l. B o i l e r 
engine fuel type must be s p e c i fi e d . 

Table 4.1: Request Parameters for Emission C a l c u l a t i o n s 

In return, it provides the JSON output in following fo r m a t: 

{ 

II imo II : 1 2 3 4 5 6 7 , 

"avg_speed_kn":  1 0 . 0 4 5 , 

" load_cond" :  " b a l l a s t " , 

" c a r g o _ u n i t " :  " t o n s " , 

"cargo_amt" :  5 4 4 3 8 5 . 5 4 3 , 

"me_fue l_ type" :  " M G 0 " , 

" a e _ f u e l _ t y p e " :  " M G 0 " , 

" b o i l e r _ f u e l _ t y p e " :  " M G 0 " , 

" d u r a t i o n _ h " :  3 5 4 . 5 , 

"me_fue l_cons_met r i c_met r i c_ tons" :  0 . 1 , 
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" a e _ f u e l _ c o n s _ m e t r i c _ m e t r i c _ t o n s " :  0. 1 , 

" b o i l e r _ f u e l _ c o n s _ m e t r i c _ m e t r i c _ t o n s " :  0. 1 , 

" t o t a l _ c o 2 _ e m i s s i o n _ m e t r i c _ t o n s " :  0. 1 , 

" t o t a l _ s o 2 _ e m i s s i o n _ m e t r i c _ t o n s " :  0. 1 , 

" t o t a l _ p a r t i c u l a t e _ m a t t e r _ e m i s s i o n _ m e t r i c _ t o n s " :  0 . 1 , 

" t o t a l _ n o x _ e m i s s i o n _ m e t r i c _ t o n s " :  0. 1 , 

" to ta l_nmvoc_emiss ion_met r i c_ tons" :  0. 1 , 

" t o t a l _ c h 4 _ e m i s s i o n _ m e t r i c _ t o n s " :  0. 1 , 

" t o t a l _ n 2 o _ e m i s s i o n _ m e t r i c _ t o n s " :  0. 1 , 

" t o t a l _ c o _ e m i s s i o n _ m e t r i c _ t o n s " :  0 . 1 , 

" t o t a l _ b l a c k _ c a r b o n _ e m i s s i o n _ m e t r i c _ t o n s " :  0 . 1 , 

" t o t a l _ o r g a n i c _ c a r b o n _ e m i s s i o n _ m e t r i c _ t o n s " :  0. 1 , 

" t r a n s p o r t _ w o r k " :  0 . 1 , 
II eeoi  II : 0. 1 , 

"me_co2_fac tor" :  2 . 1 , 

"Pa ramVal ida t ion" :  { 

" s t a t u s " :  " O K " 

} ' 
"LimitMessage":  { 

" m e s s a g e _ d e s c r i p t i o n " :  "You a r e  w i t h i n  your c a l l  l i m i t " 
} 

} 

Listing 4.1: ISON output format from emission a p i 

4.2 M e t h o d o l o g y 

2 9 

In this section, using trade flow data for the year 2022, along with specifications from the I H S 
dataset, we will perform data a n a l y s i s . 

Tradetable data is available in the trade flow dataset. For each segments there is trade fl o w 
and therefore we will have to perform the analysis for each segment s e p ar a t e l y . 

The steps involved in the analysis are as fo ll o w s : 

T r a d e fl o w 

  
 

       
 

 
 

Vessel Voyage Data Er ' - -  - C t t t 
..... m1ss1on a cu a or CII G r a d e 

; ; 
t H S 

Figure 4.4: Methodology O v e rv i e w 
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1. Getting distinct IMO numbers from trade fl o w 

3 0 

Distinct IMO (International Maritime Organization) numbers were obtained from the t ra d e 
flow dataset by querying the textttimo column. This process helped in identifying all t h e 
unique ships present in the dataset, forming the foundation for further a n a l y s i s . 

2. Getting necessary information for each IMO number from IHS and trade fl o w 

For each distinct IMO number identified in the previous step, the IHS dataset was q u e ri e d 
or joined with trade flow to gather relevant information about each ship. This included d e - 
tails such as specifications, fuel type, engine types, and more. The process consisted of t h e 
following s t e p s : 

• Estimating Cargo Based on Draught: Cargo was estimated using the draught noted o n 
ports and the maximum draught from the IHS dataset. This allowed for an u n d e r s t a n d i n g 
of the cargo load for different v e s s e l s . 

• Determining Laden or Ballast Trade Flows: The trade flows were categorized i n t o 
laden or ballast based on the ballast threshold percentage from segment p a ra m e t e r s . 
This categorization assisted in differentiating the vessel's operational c o n d i t i o n s . 

• Converting to Pandas DataFrame: The obtained shipTrade data was converted into a 
Pandas DataFrame, facilitating further processing and a n a l y s i s . 

• Dividing into DataFrames for Laden and Ballast Trade Flows: The trade data w a s 
divided into separate DataFrames for laden and ballast trade flows. This s e g m e n t a t i o n 
enabled focused analysis on different operational c o n d i t i o n s . 

• Extracting Information on Distance, Time, and Average Speed: Information such a s 
distance, time, and average speed was extracted for both ballast and laden trade fl o w s . 
These parameters provided insights into the efficiency and operation of the v e s s e l s . 

• Calculating Cargo: The total cargo was calculated based on laden trade data, c o n t r i b u t - 
ing to the overall understanding of the vessels' capacity and u t i l i z a t i o n . 

3. Cleaning d a ta 

Data cleaning is a critical step in the methodology, ensuring that the dataset is ready for a n a l - 
ysis. This involves handling missing values, removing duplicates, standardizing units, a n d 
correcting any inconsistencies. Specific aspects of the data cleaning process i n cl u d e d : 

• Handling Missing Speed Values: In some cases, the average speed determined fr o m 
AIS (Automatic Identification System) data might be missing or unusually high for s p e - 
cific trade flows. To address this, the distance and time values were used to c a lc u l a t e 
the average speed, ensuring that the analysis was based on consistent and realistic s p e e d 
d a t a . 
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• Excluding Trades with Missing Distance: Any trades with missing average d i s t a n c e 
values were excluded from the analysis. This helped maintain the integrity and a c c ur a c y 
of the d a t a s e t. 

Sometimes for certain trades average distance was missing, this trades were e x cl u d e d . 

4. Calculating emissions for laden and ballast t r a d e fl o w s . 

The calculation of emissions for laden and ballast trade flows was a central component of t h e 
methodology. Utilizing the information extracted in the previous steps, the emissions w e r e 
calculated using the AFC (Automated Flight Control) emission calculator APL Here's h o w 
the process was e x e c u t e d : 

• Emission Calculation Function: A specific function, getEmission, was employed t o 
calculate emissions. This function took essential parameters like IMO number, c a r g o 
amount, distance, load condition, and estimated speed as i n p u t. 

• API Request: The function made a request to the AFC emission calculator API, p a s s i n g 
the required parameters. The response from the API included detailed emission d a t a , 
providing insights into various emission aspects such as CO2, SO2, NO2, and others . 

• 

• Error Handling: The process included robust error handling to manage any issues w i t h 
the API request, ensuring that the analysis was not disrupted by unexpected errors o r 
i n c o n s i s t e n c i e s . 

5. Calculating CII, CII required, and CII r e f e r e n c e . 

Carbon Intensity Indicator (CII) is calculated as the ratio of emissions (CO2) to transport w o r k 
(distance traveled x cargo amount). CII required is based on regulatory standards, while C II 
reference can be derived from historical data or benchmarks. Calculate these indicators fo r 
each trade flow using the emission data and transport work v a l u e s . 

CII reference is calculated using the following fo rm u l a : 

CL@t = a· Capacity  ( 4 . 1 ) 

where a and Care constants according to Figure 4.5, and Capacity is the deadweight of t h e 
s h i p . 

CII required can be calculated using the following fo r m u l a : 
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c a p a c i ty S h i p t y p e 

Bulk C a r r i e r DWT > 2 7 9 , 0 0 0 2 7 9 , 0 0 0 

DWT < 2 7 9 , 0 0 0 D W T 4 7 4 5 0 . 6 2 2 

Gas C a rri e r DWT 6 5 , 0 0 0 D W T 1 4 4 0 5 E + 7 2 . 0 7 1 

DWT< 6 5 , 0 0 0 D W T 8 1 0 4 0 . 6 3 9 

T a n k e r D W T 5 2 4 7 0 . 6 1 0 

Container s h i p D W T 1 9 8 4 0 . 4 8 9 

General cargo s h i p DWT 2 0 , 0 0 0 D W T 3 1 9 4 8 0 . 7 9 2 

DWT< 2 0 , 0 0 0 D W T 5 8 8 0 . 3 8 8 5 

Refrigerated cargo c a r r i e r D W T 4 6 0 0 0 . 5 5 7 

Combination c a r r i e r D W T 5 1 1 9 0 . 6 2 2 

LNG C a r r i e r DWT 1 0 0 , 0 0 0 D W T 9 . 8 2 7 0 

100,000 > DWT 6 5 , 0 0 0 D W T 1 4 4 7 9 E + 1 0 2 . 6 7 3 

DWT< 6 5 , 0 0 0 6 5 , 0 0 0 1 4 4 7 9 E + 10 2 . 6 7 3 

Ro-ro cargo ship ( V C ) GT 5 7 , 7 0 0 5 7 , 7 0 0 3 6 2 7 0 . 5 9 0 

57,700 >GT  3 0 , 0 0 0 G T 3 6 2 7 0 . 5 9 0 

GT < 3 0 , 0 0 0 G T 3 3 0 0 . 3 2 9 

Ro-ro cargo s h i p G T 1 9 6 7 0 . 4 8 5 

Ro-ro passenger s h i p Ro-ro passenger s h i p G T 2 0 2 3 0 .4 6 0 

High-speed c r a ft G T 4 1 9 6 0 . 4 6 0 

Cruise passenger s h i p G T 9 3 0 0 . 3 8 3 

Figure 4.5: a and C c o n s t a n t s 

( 
10 0 - Z ) Requited CII = l 00 x C II R e f ( 4 . 2 ) 

In Equation 5.2, the reduction factor Z represents the initial value of 5% in the year 2 0 2 3 , 
with an annual increment of 2%. Additionally, for the years 2027 to 2030, the Z factors ar e 
subject to enhancement and refinement, guided by the evaluation of the short-term m e a s ur e ' s 
e ff e c t i v e n e s s . 
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Y e ar Reduction Factor ( Z ) 

2 0 2 3 5 % 
2 0 2 4 7 % 
2 0 2 5 9 % 
2 0 2 6 11 % 
2 0 2 7 k >k 

2 0 2 8 k >k 

2 0 2 9 k k 

2 0 3 0 k k 

Table 4.2: Reduction Factors Over the Y e a r s 

6. Calculating CII g r a d e . 

3 3 

Based on the calculated CII and CII required, determine the CII grade for each trade flow, i n d i - 
cating its compliance with emissions regulations. This can be done using predefined t h r e s h o l d s 
or standards to categorize trade flows into different CII g ra d e s . 

Taking into account that vessels will experience similar voyages in 2023 as they did i n 
2022, the CII grade for the end of 2023 can be estimated with a reduction factor Z set at 5 . 

The "dd" vector is established by calculating the ratio between Attained CII and R e q u ir e d 
CII. This ratio is subsequently compared against the thresholds for CII grades to ascertain t h e 
appropriate grade. The larger the deviation of the ratio, the lower the grade assigned, with A 
representing the best and E signifying the poorest p e rf o rm a n c e . 

Shi e 
Bulk C a r r i e r 
Gas Carrier > = 6 5 , 0 0 0 D W T 

< 6 5 , 0 0 0 D W T 
T a n k e r 
Container s h i p 
General cargo s h i p 
Refrigerated cargo c a r r i e r 
Combination ca r r i e r 
LNG Carrier >= 1 0 0 , 0 0 0 D W T 

< 1 0 0 0 0 0 D W T 
Ro-ro cargo ship ( V C ) 
Ro-ro cargo s h i p 
Ro-ro passenger s h i p 
Cruise passenger s h i p 

• 1 
 

0 . 8 6 0 . 9 4 1 . 0 6 1 . 1 8 
0 . 8 1 0 . 9 1 1 . 1 2 1 .4 4 
0 . 8 5 0 . 9 5 1 . 0 6 1 . 2 5 
0 . 8 2 0 . 9 3 1 . 0 8 1 . 2 8 
0 . 8 3 0 . 9 4 1 . 0 7 1 . 1 9 
0 . 8 3 0 . 9 4 1 . 0 6 1 . 1 9 
0 . 7 8 0 . 9 1 1 . 0 7 1 . 2 0 
0 . 8 7 0 . 9 6 1 . 0 6 1 . 1 4 
0 . 8 9 0 . 9 8 1 . 0 6 1 . 1 3 
0 . 7 8 0 . 9 2 1 . 1 0 1 . 3 7 
0 . 8 6 0 . 9 4 1 . 0 6 1 . 1 6 
0 . 7 6 0 . 8 9 1 . 0 8 1 . 2 7 
0 . 7 6 0 . 9 2 1 . 1 4 ' 3 0 . 8 7 0 . 9 5 1 . 0 6 1 . 1 6 

Figure 4.6: dd vectors for determining the rating boundaries of ship ty p e s 

Based on figure 4.6, the CII grade can be determined as represented in figure 4 . 7 . 

Following above 6 steps, we can calculate emissions, CII, CII required, CII reference a n d 
CII grade for each vessel. Results can be stored in a SQL table for further analysis. For e a c h 
segment, we can perform above steps as showing in Listing 4 . 2 
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d 

d 

E 

d , D 

L C L 
d , B 

A 

4 

10 

I I 

1 2 

Figure 4. 7: CII grading based on dd v e c t o r 

capsizeimoQeury = spark.sql(f" fl fl 

select distinct(imo) from capesize.tradeFlow as s t 
n n ) 

startDate = ' 2 0 2 2 - 0 1 - 0 1 ' 
endDate = ' 2 0 2 2 - 1 2 - 3 1 ' 
segment = ' c a p e s i z e ' 
capeSize = c a p s i z e i m o Q e u r y . t o P a n d a s ( ) 
for imo in c a p e S i z e [ ' i m o ' ] : 
imoCIIData = getCIIGradeByimo(imo, startDate, endDate, segment, 5 ) 
df = p d . D a t a F r am e ( [ i m o C I I D a t a ] ) 
s p a r k . c r e a t e D a t aF r am e d f ) . w r i t e . m o d e " a p p e n d " ) . s a v e A s T a b l e ( " e m i s s i o n s 

 . c a p e s i z e _ c i i _ 2 0 2 2 _ v 3 " ) 
t i m e . s l e e p ( 5 ) 

Listing 4.2: Analysis for capsize s e g m e n t 

In listing 4.2, we are getting distinct IMO numbers for capsize segment. Then for e a c h 
IMO number, we are calling getCIIGradeByimo function to get emissions, CII, CII r e q u i r e d , 
CII reference and CII grade. Using spark.createDataFramed f ).write) we are storing r e s u lt s 
in SQL t a b l e . 

Based on the data obtained so far, we will analysis the results in the next c h a p t e r . 
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Chapter 5 

Results and D i s c u s s i o n 

Based on the preceding analysis, following parameters were derived for each vessel, a s s u m i n g 
they will engage in similar trade flows as observed in 2022, but in the year 2023. The v e s s e l s 
have been categorized into segments, facilitating a more intricate examination of the o u t c o m e s . 
The segments encompassed within this report include Capesize, Panamax, Supramax, A fr a - 
max, Suezmax, VLGC, and V L C C. 

The analysis encompassed a total of 9,406 vessels. The parameters acquired for each v e s - 
sel comprise an array of emissions and indices, contributing to a comprehensive a s s e s s m e n t. 
These parameters encompass CO2 emissions, SO2 emissions, NOx emissions, PM e m i s s i o n s , 
NMVOC, CH4, N2O, CO, Black Carbon, Organic Carbon, EEOI, CII, and CII g ra d e . 

S e g m e n t 
S u p ra m a x 
C a p e s i z e 
P a n a m a x 
A fr a m a x 
V L G C 
V L C C 

C o u n t 
3 0 5 1 
1 8 3 7 
2 0 2 0 
1 2 0 9 
3 4 0 
9 4 9 

Table 5.1: Vessel C o u nt 

3 5 
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5.1 Grade D i s t r i b u t i o n 

Grade Distribution for Maritime Shipping Segments in 2 0 2 3 

3 6 

A fr a m a x 

V ic e 

C a p e s i z e 

P a n a m a x 

Supra m a x 

G r a d e 

 A 

- B 

- C 

- D   E 

Figure 5.1: Grade D i s t r i b u t i o n 

Grade Distribution for Combined Maritime Shipping Segments in 2 0 2 3 

C 
G r a d e 

  A 

A 

Figure 5.2: Combined G ra d e 

The pie chart analysis of vessel grades across different maritime shipping segments i n 
Figure 5 .1, along with the combined view in Figure 5 .2, offers a nuanced understanding of t h e 
quality and compliance distribution within the industry as of 2 0 2 3 . 

Most of segments shows similar distribution of grades, with Grade A being in b e t w e e n 
60% to 80% while Grade D and E being around 10%. This can be reflected in combined c h a r t 
too. Though capesize is an exception with only about 50% of vessels in Grade A and a l o m s t 
16% with grade D and E . 
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The combined pie chart encapsulates the overall landscape, showing 69.5% of vessels i n 
Grade A, and 10% in Grade D and E . 

The segment-specific insights reveal subtle variations that may be influenced by fa c t o r s 
such as vessel size, purpose, technological capabilities, and market demands. U n d e r s t a n d i n g 
these variations is essential for targeted interventions and strategies to further enhance q u a l i t y 
and c o m p l i a n c e . 

In conclusion, the pie chart analysis paints a vivid picture of the maritime shipping i n d u s - 
try's commitment to high standards as reflected in the grades. It also emphasizes the need fo r 
continuous innovation, particularly in the face of stricter grading systems in the future. T h e 
segment-wise insights provide valuable guidance for industry stakeholders, regulators, a n d 
policymakers, facilitating data-driven decision-making and fostering a culture of c o n t i n u o u s 
improvement and a d a p t a t i o n . 

5.2 Projected Grade Tr e n d 

Projected Grade Trend from 2023 to 2026 for Combined Maritime Shipping S e g m e n t s 

7 0 

6 0 

G r a d e 

- A 
- B 
•- C 
-•- D 
-• L 

2 0 

10 

Y e a r 

Figure 5.3: Projected Grade T r e n d 

The analysis of the projected grade trend from 2023 to 2026 in plot 5.3 unveils a c o m p e lli n g 
narrative of the industry's response to an increasingly stringent grading system. The m o s t 
pronounced observation is the decline in the percentage of vessels achieving Grade A, fa lli n g 
from 69% in 2023 to less than 60% in 2026. This reduction is not indicative of a decline i n 
quality or compliance but rather a reflection of the escalating standards and criteria set by t h e 
grading a u th o r i t i e s . 

This trend underscores the industry's challenge to keep pace with evolving regulations a n d 

������� 



CHAPTER 5. RESULTS AND D I S C U S S I O N 3 8 

the imperative for continuous innovation and improvement. As the grading system b e c o m e s 
more demanding, the criteria for achieving Grade A are elevated, pushing some vessels i n t o 
the Band C categories. The growth in Grades Band C, from about 12.18% to 16% and 9% t o 
12% respectively, illustrates this s h i f t. 

Even the slight increases in Grades D and E, though representing a smaller fraction of t h e 
fleet, emphasize the pressing need for maritime shipping to adapt, innovate, and invest in n e w 
technologies and practices. The trend towards more rigorous grading is likely driven by g l o b a l 
efforts to enhance environmental sustainability, safety standards, and overall efficiency w i th i n 
the maritime s e c t o r . 

The observed grade trend serves as both a challenge and an opportunity for maritime s h i p - 
ping. It calls for a proactive and strategic approach, where shipping companies must e m b ra c e 
research and development, adopt advanced technologies, and foster a culture of e x c e ll e n c e . 
The industry must recognize that the path to high grades is dynamic and requires o n g o i n g 
commitment to align with the progressive s t a n d ar d s . 

In conclusion, the projected grade trend from 2023 to 2026 is a testament to the m ar i t i m e 
shipping industry's evolving landscape. It emphasizes the critical role of innovation in m e e t - 
ing the future demands of a stricter grading system. This trend offers valuable insights fo r 
policymakers, regulators, and industry leaders, guiding them towards collaborative efforts t h a t 
ensure the maritime shipping industry not only maintains its current standards but c o n t i n u a ll y 
strives to reach new heights of quality and r e s p o n s i b i l i t y . 

5.3 EEOI vs G r a d e 

Mean EEOI vs Grades in Shipping I n d u s t r y 

1. 2 

1. 1 

1. 0 

o 0 . 9 
w 
w 
  
O 2 0 . 8 -,- 

4 - 

4 - 

0 . 7 

E D C 
G r a d e 

B A 

Figure 5.4: Mean EEO! vs G ra d e 

The above Figure 5.4 represents relationship between EEOI and g ra d e . 
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Lower Efficiency Operational Indicator (EEOI) means vessels uses less fuel to a c h i e v e 
same amount of work. The relationship between the Energy EEOI and vessel grades in t h e 
maritime shipping industry offers a logical and meaningful correlation. Lower EEOI v a l u e s , 
signifying better energy efficiency, correspond to higher vessel grades (A being the h i g h e s t ) . 
The grading system incentivize energy-efficient practices and provides a transparent metric fo r 
evaluating vessel quality and environmental r e s p o n s i b i l i t y . 

5.4 Average speed vs G r a d e 

Relationship Between Mean Combined Average Speed and Grades (All S e g m e n t s ) 

E I x K X x x x Xx 

D 

x 

 

X X X X 

xx x     x % 

0 2 0 2 K -  3K 

B G r a d e s 
x Grade A 
x Grade B 
X Grade C 
X Grade D 

     

A xGradeE x  x xx    sonaaaeeaenaaenax 2eK % 

0 4 6 8 10 1 2 1 4 
Mean Combined Average Speed (ballastAvgSpeed + ladenAvgSpeed) / 2 

Figure 5.5: Average Speed vs G ra d e 

To understand if speed has any impact on grade, scatter plot of average speed vs grade i s 
plotted. From the plot 5 .5 it is noticed that vessels with lower speed have better grade. It i s 
very clear that almost all the vessels with speed 12.5 knots or more have grade C or b e l o w . 

5.5 Build Country vs G r a d e 

Country where vessels are built can effect grade significantly as many parameters like m a t e r i - 
als, technology, regulations etc. can vary from country to country. To verify this h y p o t h e s i s , 
grade distribution by build country is plotted in Figure 5.6. To make the plot more r e a d a b l e , 
only top 3 countries China, Japan and South Korea were c o n s i d e r e d . 

From plot 5.6 it is clear that vessels built in Japan have better grade than vessels built i n 
China or South K o r e a . 
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Distribution of Grades for Vessels Built in China, Japan, and South K o r e a 

4 0 

7 0 

6 0 

Vl 

 5 0  
 
 4 0 
Q) 

0 

  3 3 0 
Q)  

2 0 

10 

0 
C h i n a J a p a n 

Country of B u i l d 

Figure 5.6: Grade By Build C o u n t ry 

Korea, S o u t h 

G r a d e 
  A 

- B   C 

- D 
E 

5.6 Addressing Low R a t i n g 

When a ship's Carbon Intensity Indicator (CII) receives a low grade of D for three c o n s e c u t i v e 
years or E for one year, specific measures must be undertaken to address and improve t h e 
situation. As per the regulations, a corrective action plan must be submitted and a p p ro v e d . 

Some of the strategies include the use of alternative fuels, which may require s i g n i fi c a n t 
investment but have high effectiveness; the application of low friction paint and Energy S a v i n g 
Devices (ESD) to improve hardware; voyage optimization and fleet optimization, which m a y 
require preliminary examination but have a low to middle cost and depend on the ship's s p e c i fi c 
situation; and slow steaming, which requires an analysis of monitoring results and e s t i m a t i o n 
of cost-effectiveness. These methods indicate a multifaceted approach that considers c o s t , 
effectiveness, and specific ship characteristics to overcome the challenges associated with a 
low CII rating. The strategies emphasize both technological improvements and o p e ra t i o n a l 
adjustments, reflecting an integrated approach to enhance environmental performance [ 6 ] . 

5.7 E m i s s i o n s 

Based on AF code emission API and vessel parameters, various emissions are calculated fo r 
each vessel grouped by segment. Figure 5.7 shows percentage of emissions by s e g m e n t. 

The analysis reveals a diverse emission profile across segments such as VLCC, VLG, A fr a - 
max, Panamax, Capesize, and Supramax. Notably, the VLCC segment emerges as a s i g n i fi c a n t 
contributor to emissions such as CO2, S02,  and NOx, highlighting potential areas for e m i s s i o n 
reduction s t ra t e g i e s . 
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Other point to note is that for Methane (CH4) Aframax segment is the highest c o n t r i b u - 
tor. It is intresting to note thst Supramax being the segment with largest vessels c o n tr i b u t e s 
significantly l e s s . 

Percentage Contribution of Emissions by S e g m e n t 

CO 2 5 0 2 N O x P M N M V O C 

5 0 

 
o . + s;, <..- '-- ..:. ' °' (, 

 
(:'1>+ <;:- ..,_ 1, + 5 J;- <$;' 

 
0 . +  <.., (., ..J; , o, (, 

 
. + . + .¼ (,, (., .:s- <$;' , + 0 . +  _:s- 0, c, ., , 

4 , . , . ., , 
4 .' '  5 

., , 
4 , • " • " , .  • • " • " , • "  , • " • " 

Se g m e n t S e g m e n t S e g m e n t S e g m e n t S e g m e n t 

C H 4 N 2 0 c o Black C a r b o n Organic C a r b o n 

Se g m e n t 

     
t, ,q'I> <;, -':> 'Q 

S e g m e n t 

     
V ,:{><;:' ., , § < ' 

S e g m e n t 

Figure 5. 7: Percentage of Emissions by S e g m e n t 
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Chapter 6 

C o n c l u s i o n 

Initially, dividing the vessels into segments and assigning Grade from A to E for given y e a r 
as Carbon intensity indicator provides a clear picture of the carbon emissions of the v e s s e l. 
Through the analysis of more than 9000 vessels, it was found that the average grade of v e s s e l s 
has been decreasing over the years. This shows that the carbon emissions of vessels has b e e n 
increasing over the years. If the emissions during the voyage is not reduced, Carbon i n t e n s i t y 
indicator of more and more vessels will fall under D or E g ra d e . 

The thesis also shows that one of the key factor effecting the carbon emissions is the s p e e d 
and EEOI of the vessel. Using alternative fuels, applying low friction paint, voyage ro u t e 
optimization, and using latest hardware are some of the practical solutions to reduce the c a r b o n 
emissions of the v e s s e l s 

This study delved into a comprehensive investigation of carbon emissions in m a r i t i m e 
shipping, a crucial yet intricate facet of the industry. Through the course of this r e s e a r c h , 
several key questions were a d d r e s s e d : 

1. Understanding Complexity with Simplicity: The analysis demonstrated that even t h e 
multifaceted nature of emissions could be understood through a well-structured a n d 
comprehensible system. By breaking down complex elements, the thesis facilitated a 
clearer grasp of emissions d y n a m i c s . 

2. Categorization of Vessels: The categorization of vessels into distinct segments s u c h 
as Capesize, Panamax, Supramax, and others enabled a more nuanced examination o f 
carbon emissions. This segmentation provided unique insights into each category's c h a r - 
acteristics and emissions b e h a v i o r . 

3. Factors Affecting Carbon Emissions: A comprehensive analysis was conducted t o 
identify the multitude of factors affecting a vessel's carbon emissions. This u n d e r s t a n d - 
ing forms a foundation for more targeted and effective emissions control s t ra t e g i e s . 

4. Realistic Emissions Reduction: The thesis explored various cost-effective and p ra c t i c a l 
measures to reduce carbon emissions. These findings not only contribute to e n v i ro n m e n - 
tal sustainability but also offer realistic paths for industry i m p l e m e n t a t i o n . 

4 2 
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This thesis set the stage for future research that continues to push the boundaries of o ur 
understanding and capabilities. Looking ahead, there are several promising avenues for fu - 
ture research. The consideration of port emissions alongside voyage emissions presents a n 
opportunity for a more holistic view of maritime carbon footprints. Additionally, a n a l y z i n g 
more vessel segments will further refine our understanding and provide more detailed i n s i g h t s . 
These future efforts align with the ongoing pursuit of environmental responsibility and e f fi - 
ciency in the maritime shipping i n d u s t r y . 

In conclusion, this thesis has made a significant contribution to the field by u nr a v e l i n g 
the complexities of maritime shipping's carbon emissions. It has provided valuable i n s i g h t s , 
practical solutions, and set the stage for future research that continues to push the b o u n d a r i e s 
of our understanding and c a p a b i li t i e s . 
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