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Abstract

Maritime shipping stands as a pivotal pillar within the global economy, facilitating the trans-
portation of over 90% of the world’s commodities and also major contributor to carbon emis-
sions. Maritime industy is a very volatile system generating very large and complex data
sets. Employing the robust framework of Big Data analysis, this thesis explores the carbon
emissions of maritime shipping through indicators like Carbon Intensity Indicator (CII) and
Energy Efficiency Operating Indicator (EEOI). Analysing emissions of about 9400 vessels
grouped by segments and assigning them A to E grade based on their emissions helps us to
understand complexity of emissions in maritime shipping with simple grading system.

The projection of Carbon Intensity Indicator (CII) trends for the period 2023 to 2026 elu-
cidates a concerning pattern: a growing number of vessels may soon be graded D or E due
to elevated carbon intensity. The examination of the interplay between vessel speed, EEOI,
and grade exposes noteworthy insights. It is evident that vessels exhibiting lower speed and
reduced EEOI tend to achieve superior grades. This revelation helps to inovate to find practical
and cost-effective pathways for emissions mitigation, including measures such as the reduc-
tion of vessel speed, the implementation of low friction coatings, and the diligent maintenance
of propellers and hulls.

This thesis makes significant strides in advancing our comprehension of maritime ship-
ping’s carbon impact. By offering pragmatic solutions, it not only addresses a pressing concern
but also lays the groundwork for responsible and informed industry practices.
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Chapter 1

Introduction

1.1 Background and Motivation

In the 21st century, climate change is the biggest challenge faced by humanity. It poses a
substantial danger to the survival of the inhabitants of our planet. Human activities such as
deforestation, extraction and burning of fossil fuels have led to a rise in global temperatures.
The consequences of such activities are an increase in sea levels, extreme weather events,
and loss of biodiversity. There is an urgent and undeniable need to reduce greenhouse gas
emissions and transition to a sustainable and low-carbon future.

Maritime shipping is essential to the global economy. It accounts for transporting 90%
of the world’s goods by volume. It is also a major source of greenhouse gas emissions, with
the International Maritime Organization (IMO) estimating that maritime shipping accounts for
3% of global carbon dioxide emissions. While 3% may seem small, it is important to note
that this is a rapidly growing sector. Without action, maritime shipping contribution to carbon
emissions can increase by up to 10-13% in the next few decades. Due to this fact, there is a
growing global effort to reduce emissions from this sector. [13].

The European Green Deal is a significant initiative by the European Union to make Eu-
rope the world’s first climate-neutral continent by 2050 . It aims to transform various sectors,
including shipping, to reduce environmental impacts. Through meticulous analysis of total
carbon emissions within the maritime sector using advanced data techniques, this research can
significantly contributes to the goals of the European Green Deal. It can aid in formulating
policies, monitoring progress, and promoting sustainable practices, aligning with the Green
Deal’s emphasis on innovation, global cooperation, and eco-conscious industrial transforma-
tion [23]. This study’s alignment with the European Green Deal underscores its relevance and
importance within the broader context of sustainability-focused endeavors.

In accordance with Sustainable Development Goal 13, in 2018, the initial strategy was
adopted by IMO’s Environmental Protection Committee (MEPC), during its 72nd session at
IMO Headquarters in London, United Kingdom. According to this strategy, the IMO will
work towards reducing the total annual greenhouse gas emissions from international shipping



CHAPTER 1. INTRODUCTION 2

by at least 50% by 2050 compared to 2008 [30]. In the 76th session of MEPC in 2021, ser-
val mandatory measures were adopted to reduce greenhouse gas emissions from international
shipping, which will help in achieving the goal of reducing emissions by 50% by 2050 [31].
One of the important measures is the Carbon Intensity Indicator (CII).

Maritime shipping is a complex and highly volatile system, generating very large data
sets. Big data analytics can be used to understand the complex system and make informed
decisions. It can facilitate operations such as monitoring of emissions and predictive analysis
of vessel performance. This can help in reducing emissions and improving the efficiency of
the maritime sector [34].

neline

MO GHG Strategy Zero by 2050 ew—

Figure 1.1: Emission trajectories for different levels of ambition for emission reduction targets

1.2 Big Data Analysis

Big data analytics is where advanced analytic techniques operate on big data sets. Hence, big
data analytics is really about two things — big data and analytics.

1.2.1 Big Data

As the name suggests, big data is a large amount of data. There are other important attributes
of big data. These are: data variety and data velocity.

Thus we can define big data using 3 V’s: volume, variety, and velocity as showing in figure
1.2.

Beyond these three V’s, Big Data is also about how complicated the computing problem is.
Given the number of variables and number of data points for analysing the maritime shipping
data. It is a very complicated problem. Thus, in addition to the three V’s identified by IBM, it
would also be necessary to take complexity into account as shown in figure 1.3 [16].
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* Terabytes
* Records
* Transactions
* Tables, files
* Batch * Structured
* Near time * Unstructured
* Real time * Semistructured
* Streams * All the above

Figure 1.2: Big Data: 3 V’s [14]

VOLUME

4

VARIETY Bit VELOCITY
DATA

COMPLEXITY

Figure 1.3: Big Data: Beyond 3 V’s - volume, velocity, variety, and complexity
1.2.2 What is Big Data Analytics?

Big data analytics is the process of examining large and varied data sets to uncover hidden pat-
terns, unknown correlations, market trends, customer preferences and other useful information
that can help organizations make more-informed business decisions.

Thus, Data analytics revolves around deriving valuable knowledge and meaningful insights
from extensive sets of data. This process involves crafting hypotheses, often rooted in gathered
experiences and uncovering correlations between variables, sometimes even through serendip-
itous discoveries. Data analytics can be classified into four distinct types [19]:

1. Descriptive Analytics

Descriptive analytics focuses on explaining past events and presenting them in a comprehensi-
ble manner. The collected data is structured into visual aids like bar charts, graphs, pie charts,
maps, and scatter diagrams, facilitating easy interpretation that offers insights into the data’s
implications. This mode of data representation is often termed a dashboard, reminiscent of
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a car’s dashboard that provides details such as speed, engine status, fuel levels, and distance
traveled. A classic instance of descriptive analytics involves displaying population census data,
which categorizes a nation’s population by gender, age brackets, education, income, popula-
tion density, and similar criteria [19].

2. Predictive Analytics

Predictive analytics extends beyond existing data to forecast forthcoming events. It anticipates
what is likely to occur in the immediate future. Techniques like time series analysis utilizing
statistical methods, neural networks, and machine learning algorithms are employed for this
extrapolation. A significant application of predictive analytics is seen in marketing, where it
understands customer preferences and needs. For instance, when purchasing shoes online, an
advertisement for socks may appear. Another prevalent application is in orchestrating elec-
tion campaigns. This involves gathering diverse data, such as the demographics of voters in
different areas and their perceived needs like infrastructure and local concerns [19].

3. Prescriptive Analytics

This process detects opportunities for enhancing existing solutions by analyzing collected data.
Essentially, it guides us on the actions to undertake in order to accomplish a particular objec-
tive. An illustrative instance is observed in the aviation industry where airlines determine seat
pricing through analysis of historical travel patterns, popular travel origins and destinations,
significant events, holidays, and more. This approach is employed to optimize profit genera-
tion [19].

4. Exploratory or Discovery Analytics

This process uncovers unforeseen connections among variables within extensive datasets. The
collection and analysis of data from diverse sources opens up new avenues for gaining insights
and making serendipitous discoveries. One of its major applications involves the identification
of patterns in customers’ behavior by companies through sources like feedback, tweets, blogs,
Facebook data, emails, and sales trends. By deciphering customer behavior, companies can
potentially predict actions like renewing a magazine subscription, switching mobile phone
service providers, or canceling a hotel reservation. Armed with this information, companies
can devise appealing offers aimed at altering the anticipated course of action by the customer
[19].

1.3 Indicators

Indicators play a crucial role in assessing and monitoring carbon emissions in the maritime
shipping industry. They provide valuable insights into the environmental performance of ves-
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sels, facilitate comparisons between different ships or fleets, and help track progress towards
emission reduction targets. By measuring various aspects of emissions and energy efficiency,
these indicators enable stakeholders to identify opportunities for improvement and implement
effective strategies to mitigate the environmental impact of shipping operations.

In this section, we will discuss several key indicators commonly used in the monitoring and
evaluation of carbon emissions in maritime shipping. These indicators cover a range of factors,
including carbon intensity, energy efficiency, fuel consumption, and cargo transport work.
Each indicator offers a unique perspective on emissions, providing researchers, policymakers,
and industry stakeholders with valuable information to support decision-making and foster
sustainable practices.

It is important to note that the selection and use of indicators may vary depending on
the specific research objectives, data availability, and regulatory frameworks in place. The
combination of different indicators allows for a comprehensive assessment of emissions and
enables a deeper understanding of the efficiency and environmental performance of shipping
activities.

Below is the list of indicators discussed in this section:

1. Carbon Intensity Indicator (CII)
2. Energy Efficiency Operational Indicator (EEOI)
3. Energy Efficiency Design Index (EEDI)

4. Energy Efficiency eXisting ship Index (EEXI)

1.3.1 Carbon Intensity Indicator (CII)

The International Maritime Organization (IMO) has introduced a new carbon intensity (CII)
measure for ships, which is a more accurate way to evaluate a vessel’s environmental impact
than total carbon emissions. CII is calculated using the Annual Efficiency Ratio (AER) for-
mula, taking into account a ship’s fuel consumption, CO2 emission factor, annual distance
sailed, and design deadweight.

To calculate CII in the most basic form:

Carbon Emission

ClI (1.1)

~ Distance Travelled x Cargo Capacity

Vessels are rated A to E based on their CII results, and those with a D or E rating for three
consecutive years or an E rating in one year must submit a corrective action plan. The IMO
will enforce CII regulations for all ships over 5,000 GT and require an enhanced Ship En-
ergy Efficiency Management Plan (SEEMP) with ClI-related content from January 2023. The
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SEEMP must include the ship’s required annual operational CII target and an implementation
plan to achieve it over the next three years. [2].

Inferior boundary boundary

d, p min@ferjqr Upper boundary
dsy

.. € moderate

d,

Required CII

- Lower boundary

B Minor superiof|

Superior boundary

Figure 1.4: Schematic diagram of the CII ratings and boundaries. [29]

The article [21], discusses the increasing popularity of Energy and Carbon Intensity in-
dicators among policy makers, which are calculated as units of energy or mass of emissions
per unit of Gross Domestic Product (GDP). These indicators are gaining momentum due to
support from think tanks, public organizations, consulting groups, and academics focused on
energy and climate change policy development. The ways in which intensity indicators are
framed and perceived in public debates generated by these intermediaries are important as
they can influence policy making and the development of better sets of indicators to assess
how well countries are addressing climate change and resource efficiency policies. Intensity
indicators are appealing for emerging economies as they are not incompatible with high rates
of economic growth and do not imply the imposition of absolute emission/energy caps.

1.3.2 Energy Efficiency Operational Indicator (EEOI)

The Energy Efficiency Operational Indicator (EEOI) is a tool used to measure the CO2 gas
emissions per unit of transport work, indicating the operational efficiency of a ship. The EEOI
is calculated annually and is subject to changes after each voyage due to various external
factors, such as navigation conditions, sea area, weather, temperature, and cargo weight.

The EEOI provides an accurate measure for each voyage, and its unit depends on the type
of cargo or transport work, such as tons CO2/(tons/nautical miles), tons CO2/(TEU/nautical
miles), or tons CO2/(person/nautical miles). The formula for calculating the EEOI is repre-
sented by formula (1.2), where a lower value indicates a more energy-efficient ship [18].

EEOI — Carbon Emission (1.2)
Performed Transport Work

For the calculation of EEOI for a specific voyage, formula (1.3) is used.

YFcj-Crj

EEOI =
Meargo * D j

(1.3)
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However, when dealing with a large number of ships, formula (1.3) is expressed as equation
(1.4), taking into account parameters such as fuel type, voyage number, fuel consumption,
fuel-to-CO2 conversion factor, cargo weight, and distance traveled [28].

Y Y (ke - Cr)
Zi(mcargo,i : Di)

Averageppop = (1.4)

where:

Jj : Fuel type used

i : Navigation voyage number

FC;j : Mass of consumed fuel j at voyage i

CFj : Fuel mass to CO2 mass conversion factor with fuel j
Meargo - Weight of cargo carried (tons) on ship

D; : Distance of voyage i (nautical miles)

The fuel-to-CO2 conversion factor (CF) is a non-dimensional factor that converts fuel con-
sumption, measured in grams, to CO2 gas emissions, also measured in grams, based on the
carbon content. The below table

1.1 is showed the certain value of CF follows the type of fuel.

No. Type of fuel Reference Carbon content | CF (t-CO2/t-Fuel)
1 Diesel/gas oil ISO 8217 Grades DMX through DMC 0.875 3.206000
2 Light fuel oil (LFO) ISO 8217 Grades RMA through RMD 0.86 3.151040
3 Heavy fuel oil (HFO) ISO 8217 Grades RME through RMK 0.85 3.114400
4 | Liquefied petroleum gas (LPG) Propane, butane 0.819, 0.827 3.000000, 3.030000
5 Liquefied natural gas (LNG) 0.75 2.750000

Table 1.1: The value of CF (--CO2/t-Fuel) [28].

1.3.3 Energy Efficiency Design Index (EEDI)

Energy Efficiency Design Index (EEDI) is a legislation proposed by the International Mar-
itime Organization (IMO) to estimate the energy efficiency of ships and calculate their CO2
emissions per unit of transport work done during the ship design phase. EEDI is based on
a complex formula that takes into account the ship’s emissions, capacity, and speed, and the
lower the ship’s EEDI index, the less CO2 emissions it produces.

EEDI is a non-prescriptive mechanism that allows the shipping industry to use the latest
technologies for designing commercial vessels as long as they meet the required energy effi-
ciency levels and parameters. It lays down a minimum energy efficiency level, per capacity
mile, for different ship types and sizes, including tankers, bulk carriers, gas carriers, general
cargo ships, container ships, refrigerated cargo carriers, and combination carriers.
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The EEDI formula has two components: attained EEDI and required EEDI. The attained
EEDI is calculated using a complex formulation based on the vessel’s emissions, capacity, and
speed, while the required EEDI is the minimum level of energy efficiency that a ship must
meet as per its ship type and size. The attained EEDI is verified based on the ship’s design and

construction, and the required EEDI is the target that the ship must achieve during its operation
[20].

EEDI calculation module as part of Marpol Annex VI, following the directive MEPC.1/Circ.681
at the MEPC meeting conducted by the IMO in 2011. This regulation came into effect on Jan-
vary 1, 2013. The EEDI formula (Equation 1) specified by IMO (2011) is represented by the
equation (1.5) [27].

P-SFC-Cf
pEpp = Lo SFC-CE (1.5)
DWT - Vref

where:

P :70% of the power of the engine (main and auxiliary) in kW
SFC : Amount of fuel burned by the engines in kW (specific fuel consumption)
Cf : Emission rate of fuel used by the ship (presented in Table 1)
DWT : Ship’s capacity (in tons)
Viet : Speed of the ship (in knots)

1.3.4 Energy Efficiency eXisting ship Index (EEXI)

The Energy Efficiency Existing Ship Index (EEXI) is a regulation introduced by the Inter-
national Maritime Organization (IMO) aimed at improving the energy efficiency of existing
ships. It is part of the broader effort to reduce greenhouse gas emissions from the shipping
industry and combat climate change. The EEXT is designed to complement the Energy Effi-
ciency Design Index (EEDI), which focuses on new ship designs [4].

The EEXI is part of a comprehensive framework that includes short-term, mid-term, and
long-term measures. The short-term measures focus on technical and operational improve-
ments, such as retrofitting ships with energy-efficient technologies. The mid-term measures
involve market-based mechanisms to incentivize emission reductions, while the long-term
measures explore alternative fuels and propulsion systems [3].

The calculation of the Energy Efficiency Existing Ship Index (EEXI) can be optimized by
considering the ship’s maximum continuous rating (MCR) at 100% capacity. This approach
ensures that improvements in technical efficiency closely align with the ship’s actual opera-
tional fuel use. By accounting for the engine power limits (EPLs) within the engine margin,
which have minimal impact on ship operations, a more accurate assessment of energy effi-
ciency can be achieved. Currently, the proposed calculation methods for the EEXI involve
using either 75% of the limited MCR (MCRIlim), similar to the Energy Efficiency Design
Index (EEDI), or a higher value of 87% MCRIim, which only considers the engine margin.
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However, utilizing ship characteristics data from IHS Markit and applying the appropriate cal-
culation method, the attained EEXI score can still be estimated, providing valuable insights
into a ship’s energy performance [22].

MESFOC x Y"™ME Pyg i+ AESFOC x Pyg

Attained EEXT = 3.1144 x -
Capacity x Vref

(1.6)

The estimation of the attained EEXI score using ship characteristics data from [HS Markit,
as outlined in Equation (1.6), contributes to a more comprehensive understanding of a ship’s
energy efficiency. This information supports decision-making processes related to optimizing
operational fuel consumption, implementing retrofit measures, and promoting environmental
sustainability in the maritime industry. By calculating the EEXT at 100% MCR, the assessment
takes into account the EPLs within the engine margin, which are not expected to significantly
affect ship operations. This approach ensures that technical efficiency improvements are prop-
erly aligned with the ship’s actual operational fuel use, enabling informed decision-making for
enhancing operational fuel consumption and reducing environmental impact. Through the uti-
lization of ship characteristics data and the appropriate calculation method, the attained EEXI
score serves as a valuable tool for assessing energy efficiency and driving advancements in the
maritime sector [22].

1.4 Segments

The maritime shipping industry encompasses many more segments, this thesis will specifically
focus on bulk carriers and tank carriers.

1.4.1 Bulk Carriers

Bulk carriers are specialized vessels designed to transport unpackaged bulk cargo such as
grains, coal, ores, and cement. These vessels play a crucial role in global trade, ensuring the
efficient and cost-effective movement of essential raw materials. Bulk carriers can be further
categorized into several segments based on their size, design, and specific functionality:

* Supramax: A class of bulk carriers typically ranging from 50,000 to 60,000 deadweight
tons (DWT), offering flexibility in port access and cargo handling.

* Aframax: Medium-sized vessels with a DWT of approximately 80,000, often used for
short to medium-haul routes.

* Handysize: Smaller vessels ranging from 15,000 to 35,000 DWT, ideal for accessing
ports with size restrictions.

* Handymax: Slightly larger than Handysize, with a DWT ranging from 40,000 to 50,000.
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* Panamax: Specifically designed to pass through the Panama Canal, Panamax bulk car-
riers have a maximum DWT of around 80,000.

» Capesize: The largest bulk carriers, often exceeding 100,000 DWT, are named for their
inability to traverse the Cape of Good Hope or Cape Horn, requiring them to navigate
around these capes.

1.4.2 Tank Carriers

Tank carriers, also known as tanker ships, are designed to transport liquids such as crude
oil, petroleum products, and chemicals. These vessels play a vital role in the energy sector,
connecting oil-producing regions with global markets. Tank carriers can be categorized into
several segments, including:

* VLCC (Very Large Crude Carriers): Among the largest tank carriers, VLCCs typi-
cally have a DWT ranging from 200,000 to 320,000 tons.

* VLGC (Very Large Gas Carriers): Designed to transport liquefied petroleum gas
(LPG) and other gas products, with a capacity ranging from 70,000 to 85,000 cubic
meters.

1.5 Problem Statement

Carbon emissions from maritime shipping have been identified as a major contributor to global
greenhouse gas emissions, with the International Maritime Organization estimating that ship-
ping is responsible for around 3% of global CO2 emissions [13]. To address this issue, the
shipping industry has set targets to reduce its carbon footprint, and governments and interna-
tional organizations have introduced policies and regulations to encourage emissions reduc-
tion.

However, measuring and monitoring carbon emissions from maritime shipping can be chal-
lenging due to the complexity of the industry and the lack of reliable data. The Energy Effi-
ciency Operational Indicator (EEOI) and the Carbon Intensity Indicator (CII) have been pro-
posed as two metrics to assess the carbon efficiency of ships and enable comparison between
different vessels and fleets [35, 3]. However, there is a need to better understand the relation-
ship between EEOI and carbon emissions, as well as to identify the factors that influence this
metrics.

This thesis aims to address this problem by leveraging big data analysis and detailed ship
characteristics data to provide a more precise and holistic view of maritime shipping’s carbon
footprint. By doing so, it seeks to enhance decision-making processes related to fuel optimiza-
tion, retrofit measures, and environmental sustainability, contributing to a more responsible
and efficient maritime industry.
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1.6 Research Questions
This thesis will focus on answering following research questions:

1. How to understand complexity of emissions with simple system?

2. How does the categorization of vessels into different segments facilitate a more intricate
examination of carbon emissions?

3. What are the factors affecting the carbon emissions of a vessel?

4. Can the carbon emissions be reduced with cost effective and realistic measures?

1.7 Report Outline

THESIS

Insights into Maritime
shipping's Carbon Footprint

Introduction

Introducing relevant
concepts

|

Literature Review

In-dept background research
about relevant concepts

Data Collection &
Preprocessing

Insuring Data integrity anj

Tools & Data Analysis
Techniques

Describing tools and

preparing for analysis techniques used for analysis

)

Results

Analysing results obtained
from above steps

|

Conclusion

Figure 1.5: Thesis Outline

Chapter 2: Literature Review: This chapter covers the background information and literature
review of the thesis. this section covers comprehensive review of existing papers and research
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related to carbon emissions in maritime shipping. The aim is to provide a comprehensive
overview of the current state of research in this field and identify any gaps or opportunities for
further exploration.

Chapter 3: Data Collection and Preprocessing: In this chapter, the focus will be on gathering
and understanding the data required to perform analysis to understand emissions in maritime
shipping. Various data sources will be explored, including industry databases, research pub-
lications, and government reports. The aim is to acquire a comprehensive dataset that covers
different aspects of carbon emissions in the maritime sector. Additionally, this chapter will
delve into the intricacies of the collected data, understanding its structure, variables, and po-
tential limitations. Before conducting any data analysis, it is crucial to ensure the quality and
integrity of the dataset. This chapter will discuss the steps involved in cleaning and prepro-
cessing the data. This process may involve handling missing values, dealing with outliers,
standardizing formats, and resolving inconsistencies. By performing these necessary data
cleaning procedures, the dataset will be prepared for further analysis, ensuring reliable and
accurate results.

Chapter 4: Data Analysis Techniques: In this chapter, various data analysis techniques specific
to big data will be explored and applied to the cleaned dataset. These techniques may include
statistical analysis, machine learning algorithms, and data visualization methods. The goal is to
extract meaningful insights and patterns from the data to gain a comprehensive understanding
of carbon emissions in maritime shipping. Additionally, this chapter will discuss the tools
and technologies utilized for data analysis and highlight any specific challenges encountered
during the process.

Chapter 5: Evaluation of Results: After performing the data analysis, this chapter will focus
on evaluating and interpreting the obtained results. The findings will be compared against
existing literature, industry benchmarks, and regulatory standards to assess the significance
and implications of the analysis. The strengths and limitations of the analysis approach will be
discussed, and recommendations for future research or practical applications will be provided.
This chapter aims to provide a comprehensive evaluation of the insights gained from the data
analysis and their potential impact on the maritime shipping industry.

Chapter 5: Conclusion: The conclusion chapter will summarize the key findings and contri-
butions of the thesis. It will highlight the significance of the conducted big data analysis on
emissions in maritime shipping and its implications for sustainability and environmental ini-
tiatives. The conclusion will also discuss any potential limitations or challenges encountered
during the research and suggest avenues for further exploration in this field.



Chapter 2

Literature Review

In response to the urgent need to reduce carbon emissions and combat climate change, re-
searchers and industry stakeholders have focused on developing and implementing strategies
to reduce carbon emissions in maritime shipping.

Figure 2.1 shows that the number of publications on energy efficiency and emission reduc-
tion in the maritime industry has grown exponentially since 2016. The number of publications
from 2006 to 2015 was 76, while from 2016 to 2021, there were 260 publications, indicating
a significant increase in interest in decarbonization in the maritime industry. [11]
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Figure 2.1: Number of publications per year in energy efficiency and emission reduction in the maritime
domain

One promising area of research is the use of big data analysis to measure and improve
carbon efficiency in maritime shipping. Big data analysis involves the collection and analysis
of large and complex data sets to identify patterns, trends, and insights. In the context of
maritime shipping, big data analysis can be used to measure carbon emissions and identify
opportunities for improvement.

The purpose of this literature review is to examine the current state of research on carbon

emissions in maritime shipping, with a focus on the Energy The Energy Efficiency eXisting
ship Index (EEXI) and Carbon Intensity Indicator (CII) as key metrics for measuring carbon

13
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efficiency. The review will provide an overview of the current state of research on these met-
rics, their strengths and limitations, and their relevance for the maritime shipping industry.

The review will begin by exploring the importance of reducing carbon emissions in mar-
itime shipping and the regulatory and policy frameworks that have been established to address
this issue. It will then provide an overview of the EEXI and CII metrics, including their defi-
nitions, methodologies for calculating them, and their role in measuring carbon efficiency.

The literature review will also examine the current research on the relationship between
EEXI, CII, and carbon emissions in maritime shipping, with a particular focus on the use of
big data analysis to measure and improve carbon efficiency. It will explore the potential for
big data analysis to provide more accurate and comprehensive data on carbon emissions, and
to identify opportunities for operational and technological improvements.

Overall, this literature review will provide a comprehensive overview of the current state of
research on carbon emissions in maritime shipping, with a focus on the EEXT and CII metrics
and the potential for big data analysis to guide and inform strategies for improving carbon
efficiency in the industry.

Review by Issa, llinca, and Martini [9] shows that Maritime shipping is a crucial aspect of
global trade and the global economy, with over 85% of the volume of global trade in goods
transported by sea. However, maritime transport also has significant environmental impacts,
including carbon emissions. Approximately 3.3% of the world’s carbon dioxide (CO2) emis-
sions are attributable to maritime transport, with emissions from marine diesel oil (MDO),
marine fuel oil (MFO), and heavy fuel oil (HFO) all contributing to the problem. Reducing
carbon emissions in the maritime shipping industry is a significant challenge, but there are a
range of strategies that can be used to achieve this goal. Alternative fuels, energy efficiency
improvements, and operational measures all have the potential to reduce emissions, but they
also have significant economic and resource constraints.

Paper by Grzelakowski, Herdzik, and Skiba [7] mentions that Despite its significant con-
tribution to global economic growth, maritime transport also generates negative externalities,
primarily in the form of greenhouse gas (GHG) emissions. They discus how digitalization and
the use of artificial intelligence (Al) are being explored as potential ways to reduce emissions
in maritime shipping. Al algorithms can optimize shipping routes, reduce fuel consumption,
and minimize emissions. Additionally, digitalization can enable better data collection and
analysis, which can facilitate more accurate emissions reporting and monitoring.

According to Kao, Chung, and Chen [12], the use of automatic identification system (AIS)
to estimate ship emissions, which is an advantage due to the system’s ability to provide real-
time navigational information. Studies have been conducted utilizing AIS data to estimate ship
emissions in different regions, such as Hong Kong and the Pearl River Delta, Las Palmas Port,
Qingdao Port, Tianjin port, Naples port, and unidentified vessels with missing ship parameters.
The studies have focused on macro-scale spatial and temporal resolution, high-resolution ship
emission inventory, high temporal-spatial ship emission inventory, higher spatial-temporal res-
olution, and real-time ship emission monitoring. It proposes simulation model based on AIS
data, specification and what-if scenarios as shown in Figure 2.2
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Figure 2.2: Simulation framework

Research by Sou et al. [24], discusses the need for carbon intensity indicators (CIIs) as per-
formance monitoring tools in the shipping industry, particularly for tracking energy efficiency
trends and progress towards climate targets. The review highlights the lack of consensus on
suitable ClIs, as proposed by various countries to the International Maritime Organization
(IMO), and the need for a more comprehensive understanding of global progress towards car-
bon intensity targets from both demand and supply side indicators. The study aims to address
this issue by analyzing ClIs for shipping and the factors that influence the carbon intensity of
shipping at the global level. Index decomposition analysis (IDA) is used to quantify the con-
tribution of various factors, including energy efficiency, to changes in carbon intensity from
2012 to 2018.

According to report by Stevenson [26], The International Maritime Organization will in-
troduce Energy Efficiency eXisting ship Index (EEXI) and Carbon Intensity Indicator (CII)
regulations in 2023 as part of the wider decarbonization goals for shipping. More than three-
quarters of the existing fleet will not initially meet EEXI baselines and will need to take action
to achieve compliance, with overridable engine power limitations (0EPL) expected to be a
popular option. However, the effect on vessel operations over a year will be quite small due
to the relatively small number of hours where steaming speeds would exceed oEPL limits.
The compliance with EEXI can result in modest improvements in AER, CII, and annual CO,.
emissions.

The International Maritime Organization (IMO) has made maritime decarbonization a pri-
ority, setting targets to reduce greenhouse gas emissions from ships. To achieve these tar-
gets, the IMO has adopted mandatory measures, including the carbon intensity indicator (CII),
which measures carbon emissions per unit transport work for each ship. But Wang, Psaraftis,
and Qi [32] argues there are potential paradoxes with the CII, as it may increase carbon emis-
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Figure 2.3: EEXI BULKER ESTIMATES VS. 2023 BASELINE

sions in some situations. There are at least four potential versions of the CII, including supply-
based, demand-based, distance-based, and sailing time-based, but the IMO has not yet agreed
on which to use. More elaborate models and indicators should be developed to analyze the
potential impacts of the CII and achieve utmost carbon emissions reduction.

In “Big data and artificial intelligence in the maritime industry: a bibliometric review
and future research directions” [15], author Munim et al. explains how Big data and artificial
intelligence (Al) have become essential components of data-driven decision-making in most
industries. However, the maritime industry still relies on intuition more than on data, mainly
because of the vast size of its network and planning problems. The maritime industry generates
large amounts of data that, if appropriately utilised in decision-making, can improve maritime
safety, reduce environmental impacts, and minimise cost. In this review, we focus on studies
that deal with big data and AI applications within the maritime context to map the conceptual
structure of the field and identify future research avenues. AIS data to investigate the impact of
speed reduction on fuel consumption and carbon emissions in the shipping industry. The study
found that a 10% reduction in ship speed could result in a 17% reduction in fuel consumption
and a corresponding reduction in carbon emissions. The authors suggested that reducing ship
speed is an effective way to reduce fuel consumption and carbon emissions in the maritime
industry.

The study by Acomi and Acomi [1], delves into the realm of maritime environmental
conservation, emphasizing the Energy Efficiency Operational Index (EEOI) as a pivotal tool.
Addressing concerns of marine pollution encompassing water and air aspects, the paper under-
scores international efforts for emission reduction in shipping. The EEOI, designed to mea-
sure carbon emissions per unit of transport work, aids ship-owners and operators in enhancing
energy efficiency during operational voyages. The research demonstrates how commercial
software and a custom-developed program estimate EEOI values pre-voyage and onboard, re-
vealing the influence of unpredictable factors on energy efficiency. This analysis not only
showcases the EEOI’s significance in curbing emissions but also highlights its vital role in the
broader context of maritime sustainability and environmental protection.

In conclusion, the literature reviewed emphasizes the importance of addressing the sig-
nificant environmental impact of carbon emissions in the maritime shipping industry. While
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Figure 2.4: Application of Big dada and Al in maritime industry

there are various strategies to reduce emissions, such as alternative fuels, energy efficiency
improvements, and operational measures, they have significant economic and resource con-
straints. Digitalization and the use of artificial intelligence (Al) are being explored as potential
ways to reduce emissions by optimizing shipping routes, reducing fuel consumption, and min-
imizing emissions. Furthermore, the use of automatic identification system (AIS) data can
facilitate real-time emissions monitoring, while carbon intensity indicators (CIIs) can be used
as performance monitoring tools. The International Maritime Organization (IMO) has made
maritime decarbonization a priority by setting targets to reduce greenhouse gas emissions from
ships and introducing regulations like EEXI and CII. However, potential paradoxes with the
CII and lack of consensus on suitable CIIs highlight the need for more elaborate models and
indicators to achieve utmost carbon emissions reduction. Big data and Al applications have
the potential to improve maritime safety, reduce environmental impacts, and minimize costs.
Overall, more research is needed to address the challenges of monitoring and reducing carbon
emissions in the maritime shipping industry while meeting global trade demands.



Chapter 3

Data Acquisition and Preprocessing

Data collection and understanding play a pivotal role in extracting meaningful insights and
deriving accurate conclusions. The success of any analytical endeavor heavily relies on the
quality, comprehensiveness, and relevance of the data used. In the case of carbon emissions in
maritime shipping, gathering and understanding the data is crucial for capturing the intricacies
of this complex domain. By exploring various data sources from industry databases, a com-
prehensive dataset can be acquired, encompassing diverse dimensions of carbon emissions in
the maritime sector. Furthermore, understanding the structure, variables, and limitations of
the collected data is essential for ensuring the validity and reliability of subsequent analyses.
This includes examining the completeness of data, identifying any biases or data gaps, and
verifying the accuracy of measurements. Ultimately, a thorough and informed understanding
of the data sets the foundation for conducting rigorous data analysis and generating actionable
insights for addressing carbon emission challenges in maritime shipping.

Collaboration with Astrup Fearnleys has been instrumental in enhancing my research on
carbon emissions in maritime shipping. As a leading firm in the maritime shipping industry,
their expertise and industry connections have provided me with invaluable support and access
to crucial datasets. Specifically, through their collaboration, I was able to gain access to two
significant datasets: Automatic Identification System (AIS) data and THS dataset. Collaborat-
ing with Astrup Fearnleys Code and leveraging their industry expertise has not only provided
me with valuable datasets but also allowed me to gain insights into the complex dynamics of
the maritime shipping industry.

18
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3.1 IHS Markit dataset

The THS Markit dataset provides valuable vessel specification data for big data analysis in
maritime shipping. This dataset offers comprehensive information on vessel characteristics,
including dimensions, tonnage, engine capacity, and ownership. By leveraging this dataset,
researchers can gain insights into the diverse specifications of vessels operating in the maritime
industry.

Analyzing vessel specifications from the IHS Markit dataset allows for a deeper under-
standing of the maritime shipping landscape. Researchers can explore correlations between
vessel characteristics and various factors such as fuel efficiency, cargo capacity, or operational
performance. These insights can aid in optimizing vessel selection, fleet management, and
decision-making processes related to vessel operations.

By utilizing the vessel specification data from the IHS Markit dataset, this research con-
tributes to enhancing operational efficiency and optimizing vessel-related decisions in the mar-
itime shipping industry. This dataset equips this research to identify trends and patterns in the
maritime shipping industry related to vessel characteristics. This comprehensive dataset serves
as a robust foundation for my research, enabling me to draw meaningful conclusions and make
data-driven recommendations for the future of the industry.
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Figure 3.1: Vessel Specification Sheet [10]
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3.2 The Automatic Identification System (AIS) dataset

AIS (Automatic Identification System) was developed in the 1990s to enhance navigation
safety and prevent ship collisions. It allows ships equipped with AIS to communicate with
each other and coastal authorities through VHF transmissions. The International Maritime
Organization (IMO) mandates that all international voyage ships above 300 gross tonnage and
all passenger ships must have an AIS transmitter. Governments and authorities in different
nations also enforce AIS applications to improve safety and security.

Ship to ship
Ship to shore \
I ship to satellite \\\
4

Figure 3.2: Working of AIS

There are two types of AIS transceivers: Class A and Class B. Class A transceivers broad-
cast more data fields and have higher reporting frequencies. The information broadcasted
by a Class A transceiver can be categorized into static information, dynamic information,
and voyage-related information. Dynamic information is automatically transmitted every 2-10
seconds when the ship is underway and every 3 minutes when anchored. Static and voyage-
related information are broadcasted every 6 minutes regardless of navigational status. Class B
transponders transmit a reduced set of data and have sparser reporting intervals compared to
Class A transponders.

Data field Type Description

AIS identity and location | Static Maritime Mobile Service Identity (MMSI) and
the location of the system’s antenna on board

Ship identity Static Ship name, IMO number, type, and call sign of
the ship

Ship size Static Length and width of the ship

Ship position Dynamic | Latitude and longitude (up to 0.0001 min accu-
racy)

Speed Dynamic | Ranging from 0 knot to 102 knots (0.1 knot res-
olution)

Rate of turn Dynamic | Right or left (ranging from 0 to 720° per
minute)

Timestamp Dynamic | Timestamp of the message in UTC

Table 3.1: AIS message data fields [17]

Table 3.1 shows the data fields transmitted by AIS messages. Combining AIS data with
other databases can provide additional information. For example, port-to-port average speed
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can be calculated based on voyage distance and time stamps reported at the two ports. Cargo
weight can be estimated using draught and ship sizes. Technical ship specifications, such as
DWT (deadweight tonnage), capacity, design speed, and design draught, can be obtained from
fleet databases using the IMO number. Port-to-port bunker consumption can be estimated
based on speed, distance, and technical ship specifications like DWT and capacity [33].

3.3 AIS Trade Flow System

AIS Trade Flow systems utilize data transmitted by vessels worldwide to furnish both real-
time and historical insights into maritime trade operations [8]. The primary aim is to establish
a framework that delineates trade activities between ports, leveraging AIS signals. Designat-
ing port areas within AIS Trade Flow systems is a multifaceted undertaking encompassing
geographical and operational factors. From a geographical perspective, a port area is typically
demarcated by a set of coordinates outlining the physical confines of the port and its adja-
cent waters. This encompassing region might encompass berths, anchorages, and at times,
even approach channels. Identifying whether a ship resides within a port area often neces-
sitates comparing its current AIS-reported coordinates with the established port boundaries.
Should the ship’s location fall within these boundaries, it’s deemed situated within the port
area. Nonetheless, the analysis transcends mere geographical coordinates. For instance, a ship
might exist within a port’s geographical bounds; however, if it’s merely passing through with-
out halting or participating in port operations, it might not qualify as being ‘in port‘ from an
operational standpoint.

Addressing these intricacies, AIS Trade Flow systems frequently employ advanced algo-
rithms to precisely ascertain port boundaries and classify vessel conduct. This assessment
takes into account parameters like the vessel’s velocity, heading, and historical behavioral
trends. Through the integration of these diverse data facets, these systems can render an ex-
ceptionally precise portrayal of port undertakings and vessel trajectories. AF Code has con-
structed such a system by adhering to overarching principles, resulting in the creation of a
dataset incorporating AIS signals alongside information about port visits, cargo loading, and
unloading.
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Figure 3.3: Trade flow from 150,000 AIS sampled signals.
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To achive this, the AIS data is processed to identify port-to-port voyages and then stored
them in a database based on segments as shown in the Figure 3.4

—
e

AIS raw data provider Azure Datafactory Azure Blob Storage Databricks Trade Table

Figure 3.4: AIS Raw Data Processing

3.3.1 Vessel Voyages

Trade flow systems are designed to identify port-to-port voyages. Each of this voyages is either
Laden voyage or Ballast voyage from one port to another. At port vessel can load or unload
cargo or just refuel and continue to another port. It is important to determine port stops and
port area to identify the type of voyage. This section will describe how these voyages are
identified and classified.

Laden Voyages

The laden voyage concept centers on cargo movement, distinct from the vessel’s own traversal.
This characterization holds particular significance in evaluating logistical chains and cargo
dynamics within maritime transportation. A laden voyage pertains to the route spanning from
the cargo’s loading point at the departure port to its unloading point at the arrival port.

Ballast Voyages

The ballast voyage concept centers on the vessel’s movement without cargo, contrasting with
its movement when laden. A ballast voyage is characterized as the route from the port of cargo
unloading, serving as the departure port, to the port of cargo loading, functioning as the arrival
port.

3.3.2 Port Stop and Port Area

The initial key phase involves obtaining the coordinates of the targeted port and subsequently
establishing a polygon encompassing its vicinity. The overarching approach revolves around
quantifying unique visits within this polygon, using a geo-fence strategy. Given the utiliza-
tion of S-AIS data, there exist temporal intervals during which satellites may not receive ship
messages due to blind zones. This introduces the potential for ships to enter and exit the des-
ignated port area without satellite detection. To mitigate this, a larger polygon around the port
can decrease the likelihood of overlooked visits. However, such an expansive polygon could
result in the inclusion of vessels merely passing through, particularly if the port is positioned
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near a major shipping route. Hence, the ideal polygon size is contingent on the port’s location,
it should be sizable enough to capture all visits yet sufficiently compact to exclude vessels in
transit. This is illustrated by Figure 3.5, showcasing LNG terminals in Trinidad and Algeria
enclosed by identical polygons. Visual inspection reveals message flow towards the port in
Trinidad (5.4a) and a substantial portion of vessel flow bypassing the port in Algeria (5.4b).
Additionally, supplementary criteria like capping maximum speed and requiring navigational
statuses of anchored or moored can be incorporated to ensure vessels are genuinely engaged
in loading activities [8].

(a) Trinidad LNG receiving terminal (b) Algeria LNG export terminal

Figure 3.5: Port Area

By using the trade flow system described in this section, we can figure out the trades made
by ships in 2022. If we assume that these ships will continue with the same trading patterns in
2023, we can use the trade data to make an estimate of emissions for 2023.



Chapter 4

Tools and Data Analysis Techniques

In this section, we will use trade flow data for the year 2022, along with specifications from
the THS dataset, to perform data analysis.

4.1 Tools

To perform data analysis, we will utilize the following tools:

Python

Databricks

Apache Spark

MSSQL

Pandas

Astrup Fearnleys Code Emission Calculator API

4.1.1 Databricks

Databricks is a leading platform for big data analysis, specifically designed to handle
large-scale datasets efficiently and effectively. Leveraging Apache Spark as its core engine,
Databricks provides a distributed computing framework that enables processing massive vol-
umes of data in parallel across multiple nodes. This distributed architecture allows for signif-
icant performance improvements, reducing the time it takes to process and analyze big data
compared to traditional approaches. With its ability to handle both batch and real-time data
processing, Databricks empowers data engineers and analysts to extract valuable insights from
vast datasets, enabling them to make data-driven decisions at scale.

24
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One of the key advantages of using Databricks for big data analysis is its ease of use
and collaborative features. The platform offers interactive notebooks (Figure 4.1) that allow
data professionals to write, execute, and share code seamlessly. This enables collaborative
data exploration and simplifies the iterative process of data analysis and model development.
Moreover, Databricks provides a rich set of built-in libraries and integrations with popular big
data tools and machine learning frameworks, streamlining the development and deployment
of complex data pipelines and advanced analytical models. By abstracting the complexities
of distributed data processing, Databricks empowers data teams to focus on the analysis and
interpretation of results, accelerating the time-to-insight for big data projects and ultimately
driving business growth and innovation. One of the key benefits of using Databricks for big
data analysis is its ability to handle large volumes of data with ease. Whether you’re working
with terabytes, petabytes, or even exabytes of data, Databricks can scale to meet your needs
without sacrificing performance or reliability. This makes it an ideal solution for organizations
looking to perform complex big data analysis tasks, such as machine learning, data warehous-
ing, and real-time streaming analytics [5].
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Figure 4.1: Databricks Notebook
Overall, Databricks is a highly capable platform for big data analysis that is well-suited to
a wide range of use cases, from simple data processing tasks to complex machine learning and

statistical analysis.

The entire analysis will be conducted on Databricks with the following configuration:

Databricks Runtime Version: 11.3 LTS (includes Apache Spark 3.3.0, Scala 2.12)

8GB Memory, 4 Cores with 1 driver and 1 worker node.

Python 3

Elastic Disk
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Figure 4.2: Databricks Configuration
4.1.2 Apache Spark

Apache Spark is an open-source distributed computing framework designed for processing
and analyzing large-scale datasets in a highly efficient and parallel manner. It provides a uni-
fied platform that supports various data processing tasks, including batch processing, real-time
streaming, machine learning, and graph processing. Spark’s core abstraction is a resilient dis-
tributed dataset (RDD), which allows data to be distributed across multiple nodes in a cluster,
enabling data processing operations to be executed in parallel [25].

Databricks leverages Apache Spark as its underlying engine to offer a powerful and scal-
able data analytics platform. By integrating Spark into its infrastructure, Databricks provides
users with a seamless and interactive environment for collaborative data engineering and data
science tasks. Databricks’ interactive notebooks allow data professionals to write and execute
Spark-based code, making it easier to perform data manipulations, transformations, and anal-
ysis in real-time. The platform also offers support for various programming languages such as
Python, Scala, R, and SQL, providing users with flexibility and familiarity in their preferred
language.

Furthermore, Databricks enhances Apache Spark by providing additional features and op-
timizations to improve performance and ease of use. The platform offers auto-scaling capa-
bilities, enabling resources to be automatically allocated and released based on the workload
demand, ensuring optimal performance and cost-efficiency. Databricks also provides built-in
libraries and tools that simplify complex tasks such as machine learning and data visualization,
allowing data scientists to focus on building and deploying advanced analytical models with
ease.

In summary, Apache Spark forms the backbone of Databricks, enabling the platform to
handle large-scale datasets efficiently and deliver a collaborative and user-friendly environ-
ment for data analysis, making it a popular choice for organizations seeking to harness the
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potential of big data analytics.
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Figure 4.3: Apache Spark Configuration

4.1.3 Astrup Fearnleys Code Emission Calculator API

Astrup Fearnleys Code Emission Calculator API is a service that provides a simple interface
for calculating the emissions of a given vessel. The API is built on top of the Astrup Fearn-
leys Code Emission Calculator, It is internal tool developed to provide a simple interface for
calculating the emissions of a given vessel for researchers.

It requires the following parameters to be passed as a input:
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Parameter

Type

Description

1mo

integer

IMO of a ship that will require emission calcu-
lations.

avg_speed_kn

number

The vessel’s intended average sailing speed in
knots on the route. Optional if duration_h is
given.

distance_nm

number

Expected length of the voyage in Nautical
Miles.

cargo_unit

string

Cargo unit used to submit cargo_amt. Cur-
rently, the only possible value is tons. Used to
calculate EEOI and transport_work.

cargo_amt

number

Amount of cargo the ship is carrying (in the
given cargo_unit). Used to calculate EEOI and
transport_work.

me_fuel_type

string

Fuel type to be considered for the main engine
consumption for the emissions estimate. Over-
writing the model assumption.

ae_fuel_type

string

Fuel type to be considered for the auxiliary en-
gine consumption for the emissions estimate.
Overwriting the model assumption.

boiler_fuel_type

string

Fuel type to be considered for the boiler con-
sumption for the emissions estimate. Overwrit-
ing the model assumption.

duration_h

number

Expected duration of the voyage in hours. Op-
tional if avg_speed_kn is given.

load_cond

string

Loading condition of the vessel to be consid-
ered in the power estimation.

me_co2_factor

number

CO?2 factor for the main engine fuel. Main en-
gine fuel type must be specified.

ae_co2_factor

number

CO2 factor for the auxiliary engine fuel. Aux-
iliary engine fuel type must be specified.

boiler_co2_factor

number

CO?2 factor for the boiler engine fuel. Boiler
engine fuel type must be specified.

Table 4.1: Request Parameters for Emission Calculations

In return, it provides the JSON output in following format:

{

"imo": 1234567,
"avg_speed_kn": 10.045,

"load_cond": "ballast",
"cargo_unit": "tons",
"cargo_amt": 544385.543,

"me_fuel_type": "MGO",
"ae_fuel_type": "MGO",
"boiler_fuel_type": "MGO",
"duration_h": 354.5,

"me_fuel_cons_metric_metric_tons": 0.1,

28
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"ae_fuel_cons_metric_metric_tons": 0.1,
"boiler_fuel_cons_metric_metric_tons": 0.1,
"total_co2_emission_metric_tons": 0.1,
"total_so2_emission_metric_tons": 0.1,
"total_particulate_matter_emission_metric_tons": 0.1,
"total_nox_emission_metric_tons": 0.1,
"total_nmvoc_emission_metric_tons": 0.1,
"total_ch4_emission_metric_tons": 0.1,
"total_n20_emission_metric_tons": 0.1,
"total_co_emission_metric_tons": 0.1,
"total_black_carbon_emission_metric_tons": 0.1,
"total_organic_carbon_emission_metric_tons": 0.1,
"transport_work": 0.1,
"eeoi": 0.1,
"me_co2_factor": 2.1,
"ParamValidation": {

"status": "(OK"
B
"LimitMessage": {

"message_description": "You are within your call limit"
}

}

Listing 4.1: JSON output format from emission api

4.2 Methodology

In this section, using trade flow data for the year 2022, along with specifications from the IHS
dataset, we will perform data analysis.

Tradetable data is available in the trade flow dataset. For each segments there is trade flow
and therefore we will have to perform the analysis for each segment separately.

The steps involved in the analysis are as follows:

Tradeflow

Vessel Voyage Data & i
Emission Calculator Cll Grade

Figure 4.4: Methodology Overview
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1. Getting distinct IMO numbers from trade flow

Distinct IMO (International Maritime Organization) numbers were obtained from the trade
flow dataset by querying the textttimo column. This process helped in identifying all the
unique ships present in the dataset, forming the foundation for further analysis.

2. Getting necessary information for each IMO number from IHS and trade flow

For each distinct IMO number identified in the previous step, the THS dataset was queried
or joined with trade flow to gather relevant information about each ship. This included de-
tails such as specifications, fuel type, engine types, and more. The process consisted of the
following steps:

» Estimating Cargo Based on Draught: Cargo was estimated using the draught noted on
ports and the maximum draught from the THS dataset. This allowed for an understanding
of the cargo load for different vessels.

* Determining Laden or Ballast Trade Flows: The trade flows were categorized into
laden or ballast based on the ballast threshold percentage from segment parameters.
This categorization assisted in differentiating the vessel’s operational conditions.

* Converting to Pandas DataFrame: The obtained shipTrade data was converted into a
Pandas DataFrame, facilitating further processing and analysis.

* Dividing into DataFrames for Laden and Ballast Trade Flows: The trade data was
divided into separate DataFrames for laden and ballast trade flows. This segmentation
enabled focused analysis on different operational conditions.

* Extracting Information on Distance, Time, and Average Speed: Information such as
distance, time, and average speed was extracted for both ballast and laden trade flows.
These parameters provided insights into the efficiency and operation of the vessels.

» Calculating Cargo: The total cargo was calculated based on laden trade data, contribut-
ing to the overall understanding of the vessels’ capacity and utilization.

3. Cleaning data

Data cleaning is a critical step in the methodology, ensuring that the dataset is ready for anal-
ysis. This involves handling missing values, removing duplicates, standardizing units, and
correcting any inconsistencies. Specific aspects of the data cleaning process included:

* Handling Missing Speed Values: In some cases, the average speed determined from
AIS (Automatic Identification System) data might be missing or unusually high for spe-
cific trade flows. To address this, the distance and time values were used to calculate
the average speed, ensuring that the analysis was based on consistent and realistic speed
data.
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* Excluding Trades with Missing Distance: Any trades with missing average distance
values were excluded from the analysis. This helped maintain the integrity and accuracy
of the dataset.

Sometimes for certain trades average distance was missing, this trades were excluded.

4. Calculating emissions for laden and ballast tradeflows.

The calculation of emissions for laden and ballast trade flows was a central component of the
methodology. Utilizing the information extracted in the previous steps, the emissions were
calculated using the AFC (Automated Flight Control) emission calculator API. Here’s how
the process was executed:

* Emission Calculation Function: A specific function, getEmission, was employed to
calculate emissions. This function took essential parameters like IMO number, cargo
amount, distance, load condition, and estimated speed as input.

* API Request: The function made a request to the AFC emission calculator API, passing
the required parameters. The response from the API included detailed emission data,
providing insights into various emission aspects such as CO2, SO2, NO2, and others.

* Error Handling: The process included robust error handling to manage any issues with
the API request, ensuring that the analysis was not disrupted by unexpected errors or
inconsistencies.

5. Calculating CII, CII required, and CII reference.

Carbon Intensity Indicator (CII) is calculated as the ratio of emissions (CO,) to transport work
(distance traveled x cargo amount). CII required is based on regulatory standards, while CII
reference can be derived from historical data or benchmarks. Calculate these indicators for
each trade flow using the emission data and transport work values.

CII reference is calculated using the following formula:

Cllet = a- Capacity © (4.1)

where a and C are constants according to Figure 4.5, and Capacity is the deadweight of the
ship.

CII required can be calculated using the following formula:
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| shipte | | capacity | _a |
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Bulk Carrier DWT > 279,000 279,000 4745 0.622
DWT < 279,000 DWT 4745 0.622
Gas Carrier DWT 2 65,000 DWT 14405E+7 2.071
DWT < 65,000 DWT 8104 0.639
Tanker DWT 5247 0.610
Container ship DWT 1984 0.489
General cargo ship DWT 220,000 DWT 31948 0.792
DWT < 20,000 DWT 588 0.3885
Refrigerated cargo carrier DWT 4600 0.557
Combination carrier DWT 5119 0.622
LNG Carrier DWT = 100,000 DWT 9.827 0
100,000 > DWT 2 65,000 DWT 14479E+10 2.673
DWT < 65,000 65,000 14479E+10 2.673
Ro-ro cargo ship (VC) GT 257,700 57,700 3627 0.590
57,700 > GT = 30,000 GT 3627 0.590
GT < 30,000 GT 330 0.329
Ro-ro cargo ship GT 1967 0.485
Ro-ro passenger ship Ro-ro passenger ship GT 2023 0.460
High-speed craft GT 4196 0.460
Cruise passenger ship GT 930 0.383
Figure 4.5: a and C constants
Requited CII = < 100~ Z) x CIIRef (4.2)

100

In Equation 5.2, the reduction factor Z represents the initial value of 5% in the year 2023,
with an annual increment of 2%. Additionally, for the years 2027 to 2030, the Z factors are
subject to enhancement and refinement, guided by the evaluation of the short-term measure’s

effectiveness.
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Year Reduction Factor (Z)

2023 5%
2024 7%
2025 9%
2026 11%
2027 i
2028 ok
2029 i
2030 g

Table 4.2: Reduction Factors Over the Years

6. Calculating CII grade.

Based on the calculated CII and CII required, determine the CII grade for each trade flow, indi-
cating its compliance with emissions regulations. This can be done using predefined thresholds
or standards to categorize trade flows into different CII grades.

Taking into account that vessels will experience similar voyages in 2023 as they did in
2022, the CII grade for the end of 2023 can be estimated with a reduction factor Z set at 5.

The ”dd” vector is established by calculating the ratio between Attained CII and Required
CII. This ratio is subsequently compared against the thresholds for CII grades to ascertain the
appropriate grade. The larger the deviation of the ratio, the lower the grade assigned, with A
representing the best and E signifying the poorest performance.

Bulk Carrier 0.86 0.94 1.06 1.18
Gas Carrier  >=65,000DWT 0.81 0.91 1.12 1.44

<65,000DWT 0.85 0.95 1.06 1.25
Tanker 0.82 0.93 1.08 1.28
Container ship 0.83 0.94 1.07 1.19
General cargo ship 0.83 0.94 1.06 1.19
Refrigerated cargo carrier 0.78 0.91 1.07 1.20
Combination carrier 0.87 0.96 1.06 1.14
LNG Carrier >=100,000DWT 0.89 0.98 1.06 1.13

<100000DWT 0.78 0.92 1.10 1.37
Ro-ro cargo ship (VC) 0.86 0.94 1.06 1.16
Ro-ro cargo ship 0.76 0.89 1.08 1.27
Ro-ro passenger ship 0.76 0.92 1.14 1.30
Cruise passenger ship 0.87 0.95 1.06 1.16

Figure 4.6: dd vectors for determining the rating boundaries of ship types
Based on figure 4.6, the CII grade can be determined as represented in figure 4.7.
Following above 6 steps, we can calculate emissions, CII, CII required, CII reference and

CII grade for each vessel. Results can be stored in a SQL table for further analysis. For each
segment, we can perform above steps as showing in Listing 4.2



CHAPTER 4. TOOLS AND DATA ANALYSIS TECHNIQUES 34

o D
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Figure 4.7: CII grading based on dd vector

capsizeImoQeury = spark.sql(f"""
select distinct(imo) from capesize.tradeFlow as st
)
startDate = ’2022-01-01°
endDate = ’2022-12-31°
segment = ’capesize’
capeSize = capsizeImoQeury.toPandas()
for imo in capeSize[’imo’]:
imoCIIData = getCIIGradeByImo(imo, startDate, endDate, segment, 5)
df = pd.DataFrame([imoCIIData])
spark.createDataFrame(df) .write.mode ("append") .saveAsTable ("emissions
—» .capesize_cii_2022_v3")
time.sleep(5)

Listing 4.2: Analysis for capsize segment

In listing 4.2, we are getting distinct IMO numbers for capsize segment. Then for each
IMO number, we are calling getCIIGradeByImo function to get emissions, CII, CII required,
Cl reference and CII grade. Using spark.createDataFrame(d f).write() we are storing results
in SQL table.

Based on the data obtained so far, we will analysis the results in the next chapter.
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Results and Discussion

Based on the preceding analysis, following parameters were derived for each vessel, assuming
they will engage in similar trade flows as observed in 2022, but in the year 2023. The vessels
have been categorized into segments, facilitating a more intricate examination of the outcomes.
The segments encompassed within this report include Capesize, Panamax, Supramax, Afra-
max, Suezmax, VLGC, and VLCC.

The analysis encompassed a total of 9,406 vessels. The parameters acquired for each ves-
sel comprise an array of emissions and indices, contributing to a comprehensive assessment.
These parameters encompass CO2 emissions, SO2 emissions, NOx emissions, PM emissions,
NMVOC, CH4, N20, CO, Black Carbon, Organic Carbon, EEOI, CII, and CII grade.

Segment | Count
Supramax | 3051
Capesize | 1837
Panamax | 2020
Aframax | 1209
VLGC 340
VLCC 949

Table 5.1: Vessel Count

35
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5.1 Grade Distribution

Grade Distribution for Maritime Shipping Segments in 2023
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Figure 5.2: Combined Grade

The pie chart analysis of vessel grades across different maritime shipping segments in
Figure 5.1, along with the combined view in Figure 5.2, offers a nuanced understanding of the
quality and compliance distribution within the industry as of 2023.

Most of segments shows similar distribution of grades, with Grade A being in between
60% to 80% while Grade D and E being around 10%. This can be reflected in combined chart
too. Though capesize is an exception with only about 50% of vessels in Grade A and alomst
16% with grade D and E.
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The combined pie chart encapsulates the overall landscape, showing 69.5% of vessels in
Grade A, and 10% in Grade D and E.

The segment-specific insights reveal subtle variations that may be influenced by factors
such as vessel size, purpose, technological capabilities, and market demands. Understanding
these variations is essential for targeted interventions and strategies to further enhance quality
and compliance.

In conclusion, the pie chart analysis paints a vivid picture of the maritime shipping indus-
try’s commitment to high standards as reflected in the grades. It also emphasizes the need for
continuous innovation, particularly in the face of stricter grading systems in the future. The
segment-wise insights provide valuable guidance for industry stakeholders, regulators, and
policymakers, facilitating data-driven decision-making and fostering a culture of continuous
improvement and adaptation.

5.2 Projected Grade Trend

Projected Grade Trend from 2023 to 2026 for Combined Maritime Shipping Segments
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Figure 5.3: Projected Grade Trend

The analysis of the projected grade trend from 2023 to 2026 in plot 5.3 unveils a compelling
narrative of the industry’s response to an increasingly stringent grading system. The most
pronounced observation is the decline in the percentage of vessels achieving Grade A, falling
from 69% in 2023 to less than 60% in 2026. This reduction is not indicative of a decline in

quality or compliance but rather a reflection of the escalating standards and criteria set by the
grading authorities.

This trend underscores the industry’s challenge to keep pace with evolving regulations and
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the imperative for continuous innovation and improvement. As the grading system becomes
more demanding, the criteria for achieving Grade A are elevated, pushing some vessels into
the B and C categories. The growth in Grades B and C, from about 12.18% to 16% and 9% to
12% respectively, illustrates this shift.

Even the slight increases in Grades D and E, though representing a smaller fraction of the
fleet, emphasize the pressing need for maritime shipping to adapt, innovate, and invest in new
technologies and practices. The trend towards more rigorous grading is likely driven by global
efforts to enhance environmental sustainability, safety standards, and overall efficiency within
the maritime sector.

The observed grade trend serves as both a challenge and an opportunity for maritime ship-
ping. It calls for a proactive and strategic approach, where shipping companies must embrace
research and development, adopt advanced technologies, and foster a culture of excellence.
The industry must recognize that the path to high grades is dynamic and requires ongoing
commitment to align with the progressive standards.

In conclusion, the projected grade trend from 2023 to 2026 is a testament to the maritime
shipping industry’s evolving landscape. It emphasizes the critical role of innovation in meet-
ing the future demands of a stricter grading system. This trend offers valuable insights for
policymakers, regulators, and industry leaders, guiding them towards collaborative efforts that

ensure the maritime shipping industry not only maintains its current standards but continually
strives to reach new heights of quality and responsibility.

5.3 EEOI vs Grade

Mean EEQI vs Grades in Shipping Industry
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Figure 5.4: Mean EEOI vs Grade

The above Figure 5.4 represents relationship between EEOI and grade.
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Lower Efficiency Operational Indicator (EEOI) means vessels uses less fuel to achieve
same amount of work. The relationship between the Energy EEOI and vessel grades in the
maritime shipping industry offers a logical and meaningful correlation. Lower EEOI values,
signifying better energy efficiency, correspond to higher vessel grades (A being the highest).
The grading system incentivize energy-efficient practices and provides a transparent metric for
evaluating vessel quality and environmental responsibility.

5.4 Average speed vs Grade

Relationship Between Mean Combined Average Speed and Grades (All Segments)
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Figure 5.5: Average Speed vs Grade

To understand if speed has any impact on grade, scatter plot of average speed vs grade is
plotted. From the plot 5.5 it is noticed that vessels with lower speed have better grade. It is
very clear that almost all the vessels with speed 12.5 knots or more have grade C or below.

5.5 Build Country vs Grade

Country where vessels are built can effect grade significantly as many parameters like materi-
als, technology, regulations etc. can vary from country to country. To verify this hypothesis,
grade distribution by build country is plotted in Figure 5.6. To make the plot more readable,
only top 3 countries China, Japan and South Korea were considered.

From plot 5.6 it is clear that vessels built in Japan have better grade than vessels built in
China or South Korea.
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Distribution of Grades for Vessels Built in China, Japan, and South Korea
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Figure 5.6: Grade By Build Country

5.6 Addressing Low Rating

When a ship’s Carbon Intensity Indicator (CII) receives a low grade of D for three consecutive
years or E for one year, specific measures must be undertaken to address and improve the
situation. As per the regulations, a corrective action plan must be submitted and approved.

Some of the strategies include the use of alternative fuels, which may require significant
investment but have high effectiveness; the application of low friction paint and Energy Saving
Devices (ESD) to improve hardware; voyage optimization and fleet optimization, which may
require preliminary examination but have a low to middle cost and depend on the ship’s specific
situation; and slow steaming, which requires an analysis of monitoring results and estimation
of cost-effectiveness. These methods indicate a multifaceted approach that considers cost,
effectiveness, and specific ship characteristics to overcome the challenges associated with a
low CII rating. The strategies emphasize both technological improvements and operational
adjustments, reflecting an integrated approach to enhance environmental performance [6].

5.7 Emissions

Based on AF code emission API and vessel parameters, various emissions are calculated for
each vessel grouped by segment. Figure 5.7 shows percentage of emissions by segment.

The analysis reveals a diverse emission profile across segments such as VLCC, VLG, Afra-
max, Panamax, Capesize, and Supramax. Notably, the VLCC segment emerges as a significant
contributor to emissions such as CO2, SO2, and NOx, highlighting potential areas for emission
reduction strategies.
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Other point to note is that for Methane (CH4) Aframax segment is the highest contribu-

tor. It is intresting to note thst Supramax being the segment with largest vessels contributes
significantly less.

Percentage Contribution of Emissions by Segment
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Figure 5.7: Percentage of Emissions by Segment
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Conclusion

Initially, dividing the vessels into segments and assigning Grade from A to E for given year
as Carbon intensity indicator provides a clear picture of the carbon emissions of the vessel.
Through the analysis of more than 9000 vessels, it was found that the average grade of vessels
has been decreasing over the years. This shows that the carbon emissions of vessels has been
increasing over the years. If the emissions during the voyage is not reduced, Carbon intensity
indicator of more and more vessels will fall under D or E grade.

The thesis also shows that one of the key factor effecting the carbon emissions is the speed
and EEOI of the vessel. Using alternative fuels, applying low friction paint, voyage route
optimization, and using latest hardware are some of the practical solutions to reduce the carbon
emissions of the vessels

This study delved into a comprehensive investigation of carbon emissions in maritime
shipping, a crucial yet intricate facet of the industry. Through the course of this research,
several key questions were addressed:

1. Understanding Complexity with Simplicity: The analysis demonstrated that even the
multifaceted nature of emissions could be understood through a well-structured and
comprehensible system. By breaking down complex elements, the thesis facilitated a
clearer grasp of emissions dynamics.

2. Categorization of Vessels: The categorization of vessels into distinct segments such
as Capesize, Panamax, Supramax, and others enabled a more nuanced examination of
carbon emissions. This segmentation provided unique insights into each category’s char-
acteristics and emissions behavior.

3. Factors Affecting Carbon Emissions: A comprehensive analysis was conducted to
identify the multitude of factors affecting a vessel’s carbon emissions. This understand-
ing forms a foundation for more targeted and effective emissions control strategies.

4. Realistic Emissions Reduction: The thesis explored various cost-effective and practical
measures to reduce carbon emissions. These findings not only contribute to environmen-
tal sustainability but also offer realistic paths for industry implementation.

42
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This thesis set the stage for future research that continues to push the boundaries of our
understanding and capabilities. Looking ahead, there are several promising avenues for fu-
ture research. The consideration of port emissions alongside voyage emissions presents an
opportunity for a more holistic view of maritime carbon footprints. Additionally, analyzing
more vessel segments will further refine our understanding and provide more detailed insights.
These future efforts align with the ongoing pursuit of environmental responsibility and effi-
ciency in the maritime shipping industry.

In conclusion, this thesis has made a significant contribution to the field by unraveling
the complexities of maritime shipping’s carbon emissions. It has provided valuable insights,
practical solutions, and set the stage for future research that continues to push the boundaries
of our understanding and capabilities.
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