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ABSTRACT Self-Driving Vehicles (SDVs) are increasingly popular, with companies like Google, Uber, 

and Tesla investing significantly in self-driving technology. These vehicles could transform commuting, 

offering safer, and efficient transport. A key SDV aspect is motion planning, generating secure, and efficient 

routes. This ensures safe navigation and prevents collisions with obstacles, pedestrians, and other vehicles. 

Deep Learning (DL) could aid SDV motion planning. AI tools and algorithms, like Artificial Neural 

Networks (ANNs), Machine Learning (ML) and DL can learn from data to create effective driving strategies, 

enhancing SDV adaptability to changing conditions for improved safety and efficiency. This survey gives a 

DL-based motion planning overview for SDVs, covering behaviour planning, trajectory planning, and End 

to End Learning (E2EL). It assesses various DL-based behaviour and trajectory planning methods, comparing 

and summarizing them. It also reviews diverse E2EL techniques including Imitation Learning (IL) and 

Reinforcement Learning (RL) gaining traction lately. Additionally, this review emphasizes the significance 

of two crucial enablers: datasets and simulation deployment frameworks for SDVs. The survey compares 

strategies using multiple metrics and highlights DL-based SDV implementation challenges, including 

simulation and real-world use cases. This article also suggests future research directions to address E2EL and 

DL-based motion planning limitations. The presented article is an excellent reference for scholars, engineers, 

and decision-makers who have an interest in DL-based SDV motion planning. 

INDEX TERMS Behaviour Planning, Deep Learning, End to End Learning, Motion Planning, Self Driving 

Vehicles (SDV), Trajectory Planning.

I. INTRODUCTION 

In over the last thirty years, there has been a significant 

increase in worldwide research on Self-Driving Vehicles 

(SDVs). Recent sensor and processing technology advances, 

the potential to alter vehicular mobility, and the expected 

societal benefit have encouraged these advancements. Road 

accidents killed almost 1.3 million people annually, according 

to the WHO. Many of the 20–50 million non-fatal injuries 

cause impairments [1]. Reasons include human mistake, 

uneven speed, drunk driving, and distracted driving. SDVs 

greatly reduce driver mistake and irresponsibility in vehicle 

collisions. Physically or visually handicapped people who 

cannot drive will also have personal mobility. SDVs could 

help minimize driving stress by optimizing transportation 

time. Further, Interest in SDVs has grown rapidly in 

government, industry, academia, and the public. Due to 

advances in Artificial Intelligence (AI) and computing 

hardware [2], SDVs can modernize transportation. In 
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particular, broad SDV adoption offers great potential to reduce 

traffic accidents and congestion, especially in densely 

populated urban areas [3]. Reliability and safety difficulties 

limit SDVs to experimental programmers, notwithstanding 

experts' advances. Installing various sensors on small and 

medium-sized vehicles improves performance, safety, 

efficiency, and situational awareness. However, even with 

many sensors, SDVs struggle to recognize and respond to 

complex circumstances. To successfully implement self-

driving technology, planning approaches must be safe, 

resilient, and adaptable [4]. 

 
A. BACKGROUND 

The well-established planner uses the modular technique, 

often known as rule-based planning. SDV requires this 

method and other methods including perception [5], 

localization, and control [6], as shown in figure 1. This 

suggested strategy is streamlined and modified from papers 

[7], [8]. This method is crucial to modular approach. 

Interpretability makes the modular approach framework 

beneficial for finding faulty modules if the system acts 

unexpectedly or has defects. Section II discusses just 

modular approach planning. The modular approach to 

planning involves two main components: global route 

planning, which establishes a road-level path from the initial 

point to the desired destination, and local behavioral and 

trajectory planning, which develops a short-range trajectory. 

Despite its widespread use in the business, modular approach 

planning demands a lot of processing resources and manual 

heuristic functions. This research focuses on deep learning-

based behaviour and trajectory planning algorithms inside 

the modular approach planning method and E2EL methods 

as shown in figure 2. The numerous DL and E2EL motion 

planning algorithms utilized in SDVs have been thoroughly 

reviewed 

 

FIGURE 1. Functional blocks of SDV 
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FIGURE 2. Modular and End to End Approach for motion planning

The implementation of motion planning is of utmost 

importance for SDVs to function within a secure setting. It 

permits the ego-vehicle to move from its starting point to the 

end point., taking into account factors such as road 

boundaries, dynamics of vehicle, road obstacles, and traffic 

regulations [9]. In the disciplines of SDV, motion planning 

algorithms including Graph search-based planners [10], 

Sampling Based Planners, Interpolating Curve Planners [11] 

and Numerical Optimization [12] have had considerable 

success.  

 
TABLE 1 KEY DIFFERENCES BETWEEN TRADITIONAL MOTION PLANNING 

AND DL BASED MOTION PLANNING 

Features 
Traditional Motion 
Planning 

DL based Motion 
Planning 

Adaptability to Change Lower Higher 

Real-time Performance Lower Higher 

Generalization Lower Higher 

Computational Cost Lower (often) Higher (training) 

Explainability Higher 

Lower (it will be a 

black box) 

Planning Granularity 

Limited (predefined 

steps) 

Flexible (continuous 

adaptation) 

Obstacle Handling 
Explicitly 
programmed Can learn from data 

Integration with Sensors Limited 

Can directly 

incorporate sensor data 

Success Rate in Cluttered 

Environments Lower Higher 

 

However, Traditional SDVs use pre-programmed 

regulations, which is like building a vehicle with a rulebook 

for every driving circumstance. This technique works well 

for simple conditions, but it struggles with unpredictable 

drivers, complex environments like construction zones, and 

real-time decision-making. Learning is more dynamic with 

DL. Because they learn from massive amounts of driving 

data, these models can "understand" complex traffic patterns 

and predict driver behaviour better than pre-programmed 

restrictions. They can also adjust their plans in real time 

based on sensor data to avoid unexpected obstacles and 

driver behaviour.  DL empowers SDVs with human-like 

adaptability, making them safer and more capable in real-

world scenarios. Table 1 further clarifies the key differences 

between traditional motion planning and DL based motion 

planning.  

 
B. RELATED STUDIES 

In the expansive realm of academic literature, a multitude 

of studies have been dedicated to exploring the diverse 

dimensions of SDV technology. Among these investigations, 

A significant portion has concentrated on using DL 

algorithms for SDV motion planning [13]- [22]. However, 

while existing surveys have provided comprehensive 

overviews of this area, they often fall short in their treatment 

of behavior planning and trajectory planning as distinct 

entities. Comparison of existing survey shown in table 2. 

This lack of separate in-depth analysis undermines our 

ability to grasp the nuances and challenges unique to each 

component. 

Moreover, a striking gap in the literature lies in the 

absence of thorough implementation analysis and metrics 

evaluation. While theoretical frameworks and algorithmic 

advancements are crucial, their practical implementation and 

performance metrics are equally vital for the successful 

deployment of SDV systems. Without a detailed 

examination of implementation strategies and rigorous 

evaluation of performance metrics, our understanding 

remains incomplete, hindering progress in the field. 

It is essential to address these shortcomings in order to 

advance SDV technology.. By conducting separate, 

comprehensive surveys on behavior planning, trajectory 

planning, implementation analysis, and metrics evaluation, 

researchers can offer nuanced insights into each aspect of  
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TABLE 2 COMPARISON OF EXISTING SURVEY RELATED TO DL BASED MOTION PLANNING TECHNIQUES FOR SDVS 
Paper and 

year 

Review Article Titles Modular approach End to End Approach Focus on 

Dataset 

and 

platform 

Focus on 

Metrics 

analysis 

Focus on 

Implem 

-entation 

analysis 

Behaviour 

planning 

Trajectory 

planning 

DL 

Methods 

IL 

methods 

RIL 

methods 

Zhou H, 

2019 [13] 

Review of Learning-Based 

Longitudinal Motion Planning for 
Autonomous Vehicles: Research 

Gaps Between Self-Driving and 

Traffic Congestion 

        

Claussman 

L, 2019 

[14] 

A review of motion planning for 

highway autonomous driving         
Muhamma

d K, 2020 

[15] 

Deep Learning for Safe 

Autonomous Driving: Current 

Challenges and Future Directions 

        
Aradi 

S,2022 

[16] 

Survey of deep reinforcement 

learning for motion planning of 

autonomous vehicles 

        
Grigorescu  

S, 2020 

[17] 

A survey of deep learning 

techniques for autonomous driving         
Ye F, 

2021[18] 

A survey of deep reinforcement 

learning algorithms for motion 
planning and control of autonomous 

vehicles 

        

Elallid BB, 
2022 [19] 

A comprehensive survey on the 
application of deep and 

reinforcement learning approaches 

in autonomous driving 

        

S. Teng, 

2023[20] 

Motion planning for autonomous 

driving: The state of the art and 

future perspectives 

        
P. S. Chib, 

2024[21] 

Recent Advancements in End-to-

End Autonomous Driving Using 

Deep Learning: A Survey 

        
Wang N, 

2024[22] 

A survey on path planning for 

autonomous ground vehicles in 

unstructured environments 

        
Ours A Comprehensive Survey on Deep 

Learning-Based Motion Planning 

and End-To-End Learning for Self-
Driving Vehicle 

        

 

SDV systems. Such holistic examinations will not only 

deepen our understanding but also pave the way for more 

effective and reliable SDV capable of navigating real-world 

scenarios with confidence and precision. Hence, this survey 

mainly focuses on the DL based Motion planning (Behaviour 

planning and Trajectory planning) and End-to-End Learning 

(E2EL) methods (IL and RL). 

 
C. ARTICLE STRUCTURE AND CONTRIBUTION 

 

In this comprehensive survey, we delve into the intricacies 

of motion planning and E2EL techniques tailored for SDVs. 

The survey is meticulously structured into several sections to 

provide a thorough examination of the topic. In Section I, we 

offer a succinct introduction to the pertinent literature, laying 

the groundwork for an in-depth exploration of motion 

planning and E2EL for SDVs. Section II. A is dedicated to 

elucidating the diverse DL methodologies employed for 

behavioral planning within the context of SDVs. This section 

meticulously dissects various DL techniques utilized to 

enhance the decision-making capabilities of SDVs. 

Furthermore, Section II.B offers a detailed analysis of the 

DL methodologies employed specifically for trajectory 

planning, a crucial aspect of SDV operation. Our discussion 

of E2EL for SDVs begins in Section III. This section delves 

into the intricacies of leveraging E2EL methodologies (IL 

and RL) to give SDVs the capacity to efficiently perform 

driving duties by enabling them to learn straight through data 

gathered from sensors. In the IV section of our review paper, 

we addressed SDVs practical enablers such as datasets and 

simulation deployment frameworks. In particular, we 

examined datasets for model training and validation and 

simulation deployment platforms due to their ability to 

simulate real-world settings. We found that high-quality 

datasets and strong simulation deployment frameworks 

improve SDVs dependability and efficacy. Performance 

evaluation and comparative analysis of the reviewed models 

are meticulously discussed in Section V. This section offers 

insights into the     
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FIGURE 3. Survey Organization 

effectiveness and efficiency of different approaches, aiding 

in identifying promising avenues for further research and 

development. Moreover, In Section VI, we examined 

different types of implementations of motion planning 

algorithms for Self-Driving Vehicles (SDVs) and compared 

these various implementation types across the reviewed 

articles. Additionally, we provided explanations for why the 

major focus of research is primarily on simulation rather than 

real-world demonstration. Further, Section VII elucidates 

current challenges encountered in the domain of SDV 

motion planning and E2EL, while also providing future 

recommendations to overcome these hurdles and advance the 

field. Finally, Section VI serves as the conclusive segment of 

this survey, encapsulating key findings, summarizing crucial 

insights, and offering concluding remarks on the surveyed 

topics. The organization chart provided in Figure 3 visually 

represents the structured flow of the survey, facilitating a 

clear understanding of its contents and relationships between 

different sections. 

The following is the significant contribution of this paper: 
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• A concise and comprehensive introduction, along 

with an existing literature review in the area of motion 

planning for SDVs, is presented. 

• The article also provides a thorough literature review 

on DL-based SDV behaviour planning and trajectory 

planning, along with an extensive survey of E2EL for 

SDVs. 

• This article also provides a deep understanding of 

various datasets and simulation deployment 

frameworks utilized for SDV development. 

• The discussion includes implementation percentages 

among the reviewed papers for DL-based motion 

planning (pointing out the behavior and trajectory 

planning) and E2EL.  

• The comparison and analysis of percentages related 

to various implementation types found within the 

reviewed papers are meticulously presented. 

• Various algorithms in DL-based motion planning 

(including behaviour planning and trajectory 

planning) and E2EL are compared and discussed in 

terms of performance metrics. 

• Different challenges and their corresponding 

recommendations for DL-based motion planning 

(including behaviour and trajectory planning) and 

E2EL for SDVs are discussed. 

 

II. OVERVIEW OF MOTION PLANNING PIPELINE IN SDV 

The modular approach pipeline for SDV motion planning is 

provided here. Behaviour and trajectory planning make up 

the sophisticated local motion planning modular approach 

pipeline. The vehicle makes high-level judgements based on 

its environment and purpose during behaviour planning. This 

component determines the vehicle's dynamic road behaviour 

using numerous decision-making techniques. Overtaking, 

lane changes, pedestrian yielding, and intersection 

manoeuvres are examples. This site collects sensor data, 

predicts vehicle and object movements, and creates driving 

tactics using complex algorithms.    Trajectory planning 

refines high-level judgements into a vehicle trajectory after 

behaviour planning. Considering vehicle dynamics, road 

constraints, and safety, this component generates a smooth 

and practical SDV path. Trajectory planning algorithms 

optimize routes for safety and efficiency by considering 

vehicle speed, acceleration, road curvature, and 

impediments. Probabilistic sampling, optimization, and 

spline fitting generate safe, comfortable passenger pathways. 

Splitting the motion planning pipeline into behaviour and 

trajectory planning lets SDV systems handle complex 

scenarios safely and efficiently. Modular design lets 

complicated algorithms and models for each task be 

integrated, providing resilient and adaptive SDV systems. 
A. DETAILED SURVEY ON DL-BASED BEHAVIOUR 
PLANNING FOR SDV 

This chapter embarks on a comprehensive exploration of 

DL-based behavior planning techniques tailored specifically 

for SDVs. It delves into the intricacies of how DL algorithms 

are utilized to interpret sensor data, understand the 

surrounding environment, and formulate high-level 

decisions for SDV behavior. By leveraging DL's capabilities 

in processing vast amounts of data and learning complex 

patterns, behavior planning systems can adapt to diverse 

driving scenarios and exhibit human-like decision-making 

capabilities. 

By providing an in-depth survey of DL-based behavior 

planning for SDVs, this chapter seeks to clarify the state-of-

the-art, highlight new developments, and suggest directions 

for further study and advancement In this crucial field of 

SDV technology. Kunsong Shi et.al [23] proposed a Deep 

Neural Network (DNN) algorithm which is used to predict 

the combined car following and lane-changing behaviour of 

SDV. Authors Developed a Switch Neural Network (SNN) 

by utilizing Temporal Convolution Neural Network (TCN), 

Bi-directional Long-Short Term Memory (BiLSTM) and 

Attention Mechanism. A mathematical model for predicting 

vehicle trajectory in two dimensions was created. X, Y-

denoted Cartesian Coordinate, which indicates the target 

vehicle's position, is used to describe a vehicle's trajectory. 

Meanwhile, A FIS_LSTM model was created by Weida 

Wang et al. [24] to track the behaviour of SDVs when 

changing lanes. The FIS_LSTM model integrates LSTM 

network with Fuzzy Inference System (FIS). The primary 

determinants of lane-changing are drivers and surrounding 

traffic conditions. FIS is used to integrate driver behaviour 

and surrounding traffic conditions. Based on drivers' 

cognitive abilities, fuzzy rules are developed.  

Additionally, Gonzalez Miranda et. al. [25] implemented 

a behaviour selector for SDV using Feed Forward Neural 

Network (FFN) with Autonomy hardware. The purpose of 

this model is used to select the proper behaviour (such as 

Lane keeping, passing parked cars, Emergency breaks, and 

parking based on passenger request) based on the 

surrounding traffic environment. For the environment 

perception, CNN based yolov3 DL algorithm was 

implemented. Further, using an Attention Enhanced 

Residual-MBi-LSTM neural network, Zhanqian Wu et al. 

[26] developed a prediction model for lane change 

intentions. The purpose of this model is to predict the driver's 

anticipated behaviour when changing lanes. The initiative 

makes use of the HighD dataset to extract the ego-vehicle 

and surrounding vehicle's trajectories.  

Furthermore, to forecast a driver's intention to change 

lanes, Liang Tang et al. [27] employed the Multi_LSTM 

technique. HIL (Hardware in Loop) simulation and NGSIM 

(Next Generation Simulation) dataset were utilized, The 

SDV driving conditions and the effects of the surrounding  

TABLE 3 SUMMARY OF COMMONLY USED DL METHODS FOR BEHAVIOUR PLANNING IN SDVS 
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Deep Learning 

Technique Performance Advantage Disadvantage Limitation 

Feedforward Neural 
Network 

Moderate • Simpler architecture, easier to 

train.  

• Can be used for tasks like 

traffic sign recognition or 

initial behavior selection 

• Limited ability to handle 

complex relationships or 

sequential data 

• Its suitable for long-term 

planning or dynamic decision-

making 

• Requires large datasets for 

complex problems 

Convolutional 

Neural Network 

(CNN) 

High (Image 

Recognition) 
• Excellent at processing sensor 

data (cameras, LiDAR) 

• Identifies objects, lanes, and 

traffic signals 

• Requires large, labeled datasets 

for training 

• Computationally expensive for 

real-time processing 

• Limited to interpreting visual 

data, may not capture motion or 
intent 

Recurrent Neural 
Network (RNN) 

Good (Behaviour 
Prediction) 

• Handles sequential data like 

sensor readings over time 

• Predicts vehicle behaviour and 

maneuvers 

• It struggles with long-term 

dependencies in complex 

scenarios 

• Prone to vanishing/exploding 

gradient problems 

• Limited ability to adapt to 

unforeseen events or unexpected 

situations 

Long Short-Term 

Memory (LSTM) 

High (Long-Term 

Planning) 
• Improved RNN architecture 

for complex sequences  

• Captures long-term 

dependencies in traffic 

patterns 

• More complex to train than 

RNNs 

• Requires significant 

computational resources 

• Similar limitations to RNNs in 

handling highly dynamic or 

unpredictable situations 

Gated Recurrent 

Unit (GRU) 

Good (Behaviour 

Prediction) 
• Similar to LSTMs, but simpler 

architecture 

• Handles sequential data and 

predicts vehicle behavior 

• It struggles with very long-term 

dependencies compared to 
LSTMs 

• Less computationally expensive 

than LSTMs 

• Similar limitations to RNNs in 

handling highly dynamic or 
unpredictable situations 

Generative 

Adversarial Network 
(GAN) 

High (Generative 

tasks) 
• Powerful for generating 

realistic data  

• It learns complex distributions 

• Training is unstable 

• Requires careful hyperparameter 

tuning 

• Limited interpretability of 

generated data 

 

cars are taken into consideration when building the test set 

and training set. The suggested model was designed to 

discover the characteristics of vehicle behaviour and the 

relationship between time series of different states during a 

lane change. Authors strongly proposed that once prediction 

time increases rule-based model accuracy decreases but the 

proposed model accuracy increases. Besides this, Tao Wang 

et.al [28] developed an autonomous lane-changing system 

using LSTM-based DL technology. The system aims to 

mimic human decision-making by using a combination of 

visual and sensory data, as well as an ANN that learns from 

real-world driving scenarios. The author notes that 

traditional rule-based systems used in current SDVs cannot 

handle complex real-world situations like merging onto 

highways. The proposed system can be improved on these 

limitations by learning from experience and using a 

probabilistic approach to decision-making. The article 

concludes that the system shows promises for enhancing the 

safety and efficiency of SDV technologies. 

Meanwhile, Lin Li et al. [29] deployed Recurrent Neural 

Networks (RNNs) to forecast lane changes in vehicles. For 

SDV, the technology can help the SDV perform better lane 

changes and minimize collisions. The RNN uses sensor data 

including vehicle relative location, speed, and acceleration to 

predict lane changes in a short time. The system also filters 

false alerts and ensures inference correctness using rules. 

Additionally, A prediction making decisions method for lane 

changes was presented by Yonghwan Jeong [30] to increase 

the effectiveness of SDVs on highways. The suggested 

model analyses and forecasts lane shifts using Bidirectional-

LSTM, resulting in safer and faster self-driving on highways. 

The Bi-LSTM network is an RNN capable of learning 

prolonged dependencies in consecutive data. By utilizing Bi-

LSTM, the algorithm is capable of making forecasting in real 

time because it is able to learn as well as adjust to 

adjustments in driving conditions.  

Furthermore, for on-road SDV, Xiao Wang et al. [31] 

created a technique called LSTM_CRF, which enables the 

decision-making process of an SDV to become more human-

like. The model enhances the precision and effectiveness of 

self-driving systems by combining the advantages of the 

LSTM network and Conditional Random Field (CRF). The 

LSTM_CRF technique aims to predict the next maneuver of 

an SDV by analyzing various sensory inputs such as camera 

and lidar data, as well as the current driving state such as 

speed and acceleration. The suggested method could 

increase the safety and reliability of SDVs by enabling them 

to make human-like decisions in complex and dynamic 

driving situations. 

In addition, a Deep Bidirectional RNN Network 

(DBRNN) was deployed by Oluwatobi Olabiyi et. al [32] 

that takes input as the past states of the SDV, such as 

position, steering angle, and speed, and anticipates the
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TABLE 4 

TECHNICAL COMPARISON OF DIFFERENT DEEP LEARNING ALGORITHMS IN BEHAVIOUR PLANNING FOR SDVS 

Paper and 

year 

Proposed 

DL algorithm 

Type of  

Behaviour 

Dataset Dataset 

Ratio  

Hardware Software Response 

Time or 

Time Before 
Action 

Output Implementa

tion 

[23]Shi et. 

at 2022 

Switch neural 

 network  

(Bi-LSTM, 
TCN, AM) 

Car 

following  

Lane 
changing 

NGSIM 2250/-/250 

trajectories 

CPU-Ryzen 

3700X, 

GPU-RTX 
3090 

Python 

with 

Pytorch 

RS-21.7ms Future Lane 

Changing  

Decision (FLCD) 
and Future 

trajectory 

Simulation

+NA 

[24]Weida 
Wang et.al 

2022 

FIS_LSTM Lane 
changing 

NGSIM 
and HIL 

data 

75%/-/25% 
data 

CPU- intel i7-
10 

700@2.90GH
z 

RAM-16GB 

FIS and  
Prescan 

TBA- 3s FLCD and  
Future trajectory 

HIL 

[25]Mirand
a et. al 

2022 

FFN, 
CNN with 

yolov3 

Lane-
keeping, 

car passing, 

parallel 

park, 

emergency 

stop 

VOC 2012 
and Real 

data  

18016/-/- 
images 

AUTOMINY  
Vehicle 

Git hub's  
software 

darknet 

ROS 

Not reported Best behaviour 
selection based 

on surrounding  

environment 

status 

Simulation
+RWI 

[26] 

Zhanqian 

Wu et. al 
2022 

Attention  

enhanced  

Residual  
MBi-LSTM 

Lane 

changing 

HighD 69,861 total 

trajectories  

75%/15%/15
% 

HIL platform MATLAB  

Simulink,  

Carsim  

TBA-2.07s FLCD HIL 

[27]Liang 
Tang et. al 

2020 

Multi LSTM Lane 
changing 

NGSIM 3330 total 
samples 

70%/-/30% 

HIL platform Not 
reported 

Not 
reported 

FLCD HIL 

[28]Tao 
Wang et. al 

2021 

modified 
LSTM 

Lane 
changing 

VTD data 10800 total 
sets  

8:2 ratio 

training  
and 

validation 

CPU-i7-7700 
@  

3.60GHz 

RAM-32 GB 

Virtual 
Test 

Drive, 

Simulink, 
PreScan/  

RT-5.75s 
TBA-1.75s 

Left FLCD based 
on the 

surrounding 

environment 

HIL 

[29] Lin Li 
et. al 2021 

Intention 
Inference  

Based on 

RNN 
(LSTM_GRU) 

Lane 
changing 

NGSIM Total 300 
trajectories 

70%/-/30% 

trajectories 

Not 
reported 

TensorFlo
w, 

Carsim 

with 
Simulink 

Not 
reported 

FLCD based 
on congestion in 

different lanes 

Simulation
+NA 

[30] Jeong 
2021 

Bi-LSTM  
based RNN 

Lane 
changing 

NGSIM 
and 

Argoverse 

total 20108 
data  

set 

1120/320/16
0 data sets 

Data 
collection 

vehicle. 

MATLAB TBA- 2.7s FLCD based on 
the surrounding 

environment 

Simulation
+RWI 

[31] Xiao 

Wang et. al 
2018 

LSTM with 

CRF 

Lane 

changing  
and 

lane 

keeping  

NGSIM Entire data 

set  

CPU- intel i7 

8550u 
RAM-8GB 

Keras RT-14ms FLCD based on 

the surrounding 
environment 

Simulation

+NA 

[32] 

Olabiyi et. 

al 2017 

DBRNN 

(LSTM_GRU) 

Lane 

changing, 

braking 
action,  

turns action 

35 hours of 

real  

driving data 

70%/15%/15

%  

image data 

GPU-Nvidia 

GTX 

Tensorflo

w 

RT-5s Lane Changing 

(LC), Braking 

and turns action 
prediction SDV 

Simulation

+NA 

[33] 
Yingshi 

Guo et. al 

2021 

AT-BiLSTM Lane 
changing  

and 

lane 
keeping  

Real data 
collected 

by 42 Km 

driving  

1220 total 
samples 

60%/20%/20

% 
samples 

driving  
simulator  

platform 

Not 
reported 

TBA-3s LC and lane  
keeping 

prediction of  

ego vehicle 

HIL 

[34] Hao 

Zixu et. al 
2020 

attention  

based GRU 

Lane 

changing  

NGSIM Not 

reported 

Not 

reported 

Not 

reported 

TBA-3s LC prediction of 

the ego vehicle 

Simulation

+NA 

[35] 

Zhensong 
Wei et. al 

2019 

Deep Residual  

Neural 
Network 

(DRNN) 

Lane 

changing  

NU Drive 

1000 with 
IMU data 

187440/4500

/ 
24626 

images, 

IMU- 6 entry 
 vector 

Nvidia  

GeForce 
GTX, RAM-

64GB,  

4 core 4.20 
GHz 

Tensorflo

w 

RT- 0.028s LC prediction of 

the ego vehicle 

Simulation

+NA 
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FIGURE 4. AT-BiLSTM Architecture proposed by [33] 

 

SDV future behaviours, such as turning left or right, 

accelerating or braking. The DBRNN design enables the 

model to capture the context of the driver's conduct in both 

the past and the future and makes it suitable for predicting 

driver reactions in complex driving scenarios. 

Meanwhile, Yingshi Guo et al. suggested a networked 

technique for identifying drivers' lane-changing intentions 

[33]. The proposed method predicts driving behaviour using 

camera and sensor data. (AT-BiLSTM) is an attention 

mechanism based BiLSTM network shown in figure 4. This 

work influences intelligent transportation technologies that 

improve driver safety and traffic efficiency. Further, An AT 

based Gated Recurrent Unit (GRU) model by HAO Zixu et 

al. [34] recognized driver intention and predicted vehicle 

trajectory. The model predicts vehicle direction and 

behaviour using steering angle, acceleration, speed, driver 

gaze behaviour, and road context data from the car's sensors. 

The proposed paradigm is ideal for complex route geometry 

and unexpected events. Furthermore, using a Deep Residual 

Neural Network (DRNN), Zhensong Wei et al. [35] detect 

lane-changing behaviour using vision. The authors design 

and test the method using the Naturalistic Driving Study 

(NDS), a publicly available dataset of real-world driving 

footage from diverse viewpoints. This work aims to develop 

a reliable and scalable system to detect lane-changing 

behaviour in fully autonomous and ADAS cars. The method 

uses a Region-based Convolutional Neural Networks 

(RCNN) model, which has performed well in image and 

video object detection. The author trains the RCNN model to 

detect stable, changing right, shifting left, and ambiguous 

behaviour using the NDS dataset. Summary of the 

commonly used DL algorithms are presented in table 3. 

However, all the aforementioned DL-based behaviour 

planning algorithms were trained and evaluated in their 

corresponding dataset and experimented with their 

respective implementation method, the outcomes 

demonstrated that the aforementioned algorithms were better 

performed when compared with their corresponding state of 

art algorithms.  Table 4 compares technical details of 

recently available various DL algorithms in behaviour 

planning for SDV based on the following parameters such as 

type of DL algorithm utilized, type of input, type of output, 

Type of Dataset, Software and Hardware Utilized, Response 

Time (RT)/ Time Before Action (TBA) and way of 

Implementation, which are more   important for the 

researcher to get deep knowledge in this field of behaviour 

planning for SDVs. 

 

B. DETAILED SURVEY ON DL-BASED TRAJECTORY 

PLANNING FOR SDV 

SDVs are becoming increasingly popular, and one of the 

fundamental challenges in their development is trajectory 

planning. The process of trajectory planning entails figuring 

out the best route for SDV to travel to get to its destination 

quickly and safely. It is a complex task that considers several 

elements, including the state of the roads, traffic, 

environmental variables, etc. DL approaches have 

demonstrated promising achievements in overcoming this 

issue in recent years. DL techniques are applicable to a 

variety of domains, notably SDVs, and are capable of 

learning patterns as well as structures from massive volumes 

of data [36]. They can aid in enhancing the reliability and 

accuracy of trajectory planning for SDV, making them safer 

and more reliable in real-world scenarios. An overview of 

trajectory planning for SDV using DL has been discussed in 

this section. It will cover the different DL techniques used in 

trajectory planning for SDV using the DL framework. 

Stefano Pini et. al [37] described a new approach to SDV 

that aims to increase safety by enabling vehicles to absorb 

knowledge from the past and adjust to a variety of driving 

situations. The strategy is predicated on the idea of 

combining experts, which involves combining multiple 

models or algorithms to achieve better performance. To 

implement this approach, the author suggests training 

different models to focus on specific aspects of driving, such 

as predicting the behaviour of other vehicles, identifying 

obstacles, or planning safe and efficient routes. These 

models can then be combined into a single system that can 

dynamically adapt to changing road conditions and make 

more accurate predictions. The article presents a compelling 

vision of how a mixture of expert approaches could 

potentially increase the dependability and safety of SDT in 

real-world conditions.  

Additionally, Dan Wang et. al [38] have deployed a new 

approach to SDVs that relies on DNNs for trajectory 

learning. To extract pertinent characteristics from the input 

data and simulate temporal dependencies, the authors 

suggest a hybrid architecture that blend
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CNN and RNN. In simulator tests, the strategy produced 

encouraging results by correctly anticipating the SDV 

prospective trajectory and preventing collisions with 

surrounding vehicles and obstacles. The system's 

adaptability to different driving scenarios is one of its 

strengths. However, good performance necessitates a lot of 

training data. Further testing and refinement are necessary 

before the approach can be deployed in real-world situations. 

Besides this, Ting Chen et. al [39] have developed an 

innovative approach for predicting the trajectory of human 

motion in complex environments. The proposed method uses 

both visual and auditory cues to predict movements. The 

authors demonstrate the proposed method's effectiveness in 

predicting complex human motion trajectories in dynamic 

and cluttered environments. In addition, to detect traffic 

conflicts at unsignalized crossings, Qianxia Cao et. al [40] 

have developed a real-time vehicle trajectory estimation 

technique. To forecast each vehicle's upcoming motion as it 

approaches an intersection, the system employs a DL-based 

method. The CNN and LSTM networks are the foundation 

of the strategy, which can process the vehicle trajectory 

data's spatial and temporal characteristics. The system's 

ability to detect traffic conflicts in real-time has the potential 

to improve traffic safety at unsignalized intersections, where 

conflicts are more likely to occur.  

Similarly, a DL-based technique for vehicle trajectory 

forecasting in top-view picture sequences has been proposed 

by Zahra Salahshoori Nejad et. al [41]. To extract 

characteristics from the input image sequences and to 

forecast the prospective motion of the vehicle, the system 

employs a CNN and LSTM network respectively. The 

method is created to consider the spatial and temporal 

characteristics of the SDV movements, Along with the 

roadway profile and several environmental elements that 

could influence the motion of the vehicle. Additionally, a 

multi-modal vehicle trajectory forecasting system was 

created by Wei Tian et al. [42] using cooperative learning of 

lane direction, vehicle communication, and intended action. 

Based on a vehicle's orientation and position concerning the 

lanes on the road, the lane direction model forecasts the 

possibility that it will be in a particular lane. The suggested 

approach trains the three algorithms simultaneously using a 

multiple-tasking learning framework, enabling them to 

exchange knowledge and enhance one another's 

performance. 

Meanwhile, for scenarios involving highway driving, 

Ruben Izquierdo et al. [43] have suggested a system for 

predicting vehicle trajectory that makes use of a Bird's Eye 

View (BEV) depiction. Using a top-down, high-angle image 

of the road, the method predicts the subsequent trajectory of 

the SDV on the highway using a BEV rendering of the 

driving scenario. Based on the SDV state, velocity, and 

acceleration as well as the spatial information that the CNN 

has retrieved, the LSTM network forecasts its future course. 

Besides this, a trajectory prediction model with a corrective 

mechanism has been brought forward by Pin Lv et. al [44] 

for connected and SDVs. To learn the temporal changes in 

traffic conditions and forecast the prospective trajectories of 

surrounding vehicles, the proposed model makes use of an 

LSTM neural network. To account for potential errors in the 

predictions, the model also has a correction mechanism that 

modifies the projected trajectories based on the CAV's 

present condition and the predicted trajectories. The authors 

claim the proposed method is particularly suitable in 

scenarios where the traffic is complex, and the CAV is 

surrounded by multiple nearby vehicles. The suggested 

model, which includes a corrective mechanism, could be 

used to improve the trajectory prediction skills of real-world 

SDVs. 

Further, Bing Zhou et. al [45] have innovated an 

improved version of the LaneGCN trajectory forecasting 

technique for SDV shown in figure 6. The original LaneGCN 

technique models the spatial relationships between several 

lanes and predicts the paths of other actors in the 

environment using a Graph Convolutional neural Network 

(GCN). The suggested improvement to the technique 

includes the use of a Dynamic Graph Convolutional Network 

(DGCN) that can adaptively adjust the weights of the graph 

convolution according to the current traffic condition. The 

suggested enhancement to the LaneGCN algorithm can 

increase real-world SDV  
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FIGURE 5. LaneGCN Architecture proposed by [45]  

performance and contribute to the further development of 

SDV.Additionally, a DL-based methodology for trajectory 

prediction using regionally clustered data has been 

developed by Aditya Shrivastava et. al [46]. To estimate a 

moving object's trajectory based on its prior locations and 

timestamps, the suggested method used LSTM neural 

networks. A series of location-time pairs of a moving object 

are used as the network's input and are clustered according 

to their proximity to one another. The trajectory estimation 

problem is simplified using clustering, which also captures 

the basic temporal and spatial trends in the data. The research 

emphasizes the importance of clustering techniques in 

decreasing the complexity of trajectory estimation.  

Furthermore, A spatiotemporal LSTM network has been 

proposed by Zhengwei Bai et al. [47] as part of a DL-based 

method for motion planning in SDVs. The suggested method 

utilizes a sequence of input pictures from a front-facing 

camera to forecast the future mobility of the vehicle while 

taking into consideration the spatiotemporal properties of the 

traffic environment. There are two sub-networks in the 

spatial temporal LSTM network, one is used for the 

processing of spatial data and the other is used for the 

processing of temporal data.  

Meanwhile, an innovative DL-based method for motion 

planning in SDV has been developed by Sheng Song et al. 

[48]. In the suggested method, camera pictures and motion 

commands are input sensor data, and a CNN is used to learn 

an attribute description of those data. Then, to forecast the 

future trajectory of the SDV, an attribute description is sent 

to an LSTM network. To produce precise trajectory 

predictions, the LSTM network considers both the spatial 

and temporal relations in the sensor input. The research also 

emphasizes the dataset's usefulness in creating and assessing 

DL-based motion planning models for SDV. Further, to 

forecast multimodal trajectory in self driving scenarios, 

Henggang Cui et. al [49] have presented a DL-based 

technique. The suggested method employs deep 

convolutional networks to multimodally model the 

spatiotemporal interdependence of vehicle trajectories. The 

authors provide a brand-new dataset made up of more than 

300 hours' worth of in-depth sensor data gathered from 

various cities using a fleet of SDVs equipped with cameras, 

RADAR, and LIDAR sensors. The effectiveness of the 

suggested strategy is proved on a sizable and varied real-

world dataset, highlighting its potential for usage in SDV. 
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TABLE 5 

TECHNICAL COMPARISON OF DIFFERENT DEEP LEARNING ALGORITHMS IN TRAJECTORY PLANNING FOR SDVS 

Paper and  

year  

proposed 

Model 

DL 

Algorithms 

 Dataset Dataset 

Ratio 

Hardware Software 

Environments 

Response 

Time 

Output Implementa

-tion 

[37] Pini 
et. al 

(2022) 

SafePath 
Net 

 RCNN & 
FFN 

Real data collected 
from SDV 

environment 

 270 
hours/60 

hours/- 

Not reported Not reported Not 
reported 

Future 
Trajectory 

(FT) of SDV  

Simulation+
NA+RWI 

[38] Dan 
Wang et. 

al (2021) 

CNN_Raw-
RNN 

network 

CNN & 
LSTM 

Real data - GAC 
dataset 50 hours of 

data collected from 

different conditions 

4,80,000/60
000/ 

60000 

Images 

Not reported Not reported Not 
reported 

FT of SDV 
for  

30 m 

Simulation+
NA+RWI 

[39] Ting 

Chen et. 

al (2022) 

Improved 

CNN 

CNN Nuscenes-data set 

from the camera, 

LIDAR and RADAR 

32186/8560

/9041 set 

instances 

CPU-Intel Xeon  

Gold 5118 

(2.30GHz) GPU- 
RTX5000 

Python 3.8.8 

PyTorch 

1.10.0 
CUDA 10.2 

6seconds FT of SDV 

for 50m 

Simulation 

[40] 

Qianxia 
Cao et. al 

(2021) 

Four-layer 

LSTM  
with 

Yolov5 

LSTM Real data- 4 hours of 

traffic flow video from 
surveillance cameras  

Not 

reported 

GPU TensorFlow 2seconds FT at 

intersection 

Simulation

+NA+RTI 

[41] 

Nejad et. 

al (2021) 

Not 

reported 

CNN_LSTM High D- 147 

hours,44500km with 

25fps and 4k 

resolution 

Not 

reported 

GPU- Nvidia  

GeForce GTX 

1050 and 8GB 

RAM 

PyTorch Not 

reported 

5 seconds 

of FT 

Simulation

+NA 

[42] Wei 

Tian et. al 
(2022) 

Not 

reported 

LSTM NGSIM, HighD and 

Argoverse 

Not 

reported 

Not reported PyTorch Not 

reported 

5 seconds 

of FT 

Simulation

+NA 

[43] 

Izquierdo 
et. al 

(2022) 

U net (6 

layers) 

CNN PREVENTION- 

recorded at 16 Hz 
total of 6 hours  

9/-/2 

sequences 

Not reported Not reported Not 

reported 

2 seconds 

of FT 

Simulation

+NA 

[44] Pin 
Lv et. al 

(2022) 

PF_CNN_L
STM 

CNN_LSTM Next-Generation 
Simulation (NGSIM) 

(45 min) 

31.5/4.5/9 
minutes 

CPU-Intel Core 
i9 9900, RAM 64 

GB, GPU RTX 

2080 

PyTorch 0.2 
seconds 

FT of 
surrounding 

vehicles 

Simulation
+NA 

[45] Bing 

zhou  

et. al 
(2022) 

improved  

LaneGCN 

LaneGCN Argoverse total 

324557 scenarios 

205942/394

72/78143 

scenarios 

4 TITAN-X 

GPUs 

PyTorch 5 seconds FT of SDV  Simulation

+NA 

[46] 

Shrivastav
a et. al 

(2021) 

clustered  

LSTM_RN
N 

LSTM_RNN Real data from T 

drive using GPS 
contains 17.7 million 

data points  

14.16M/3.5

4M/-  
data points 

Not reported Tensorflow 

2.0 

0.96 

seconds 

FT of SDV  Simulation

+NA 

[47] Z Bai 
et. al 

(2018) 

spatiotemp
oral 

 LSTM 

network 

(Conv-
LSTM) & 

(3D-CNN) 

Comma-80GB raw 
image data and 

steering angle data 

Not 
reported 

CPU-Core (TM) 
i7- 

6700 RAM-32 

GB, GPU- GTX 
980  

Python with  
Keras   

Not 
reported 

Steering 
angle for 

FT of SDV 

Simulation
+NA+RTI 

[48] Song  

et. al 
(2018) 

deep 

cascaded  
neural 

network 

CNN & 

LSTM 

ETS 2 simulator data 

set- 8 hours of 
driving data images 

and motion command 

recorded  
in 30FPS 

8 hours/-/3 

scenes 

 CPU-Core i7- 

7700K @4.2 
GHz, RAM-

32GB, 

GPU-NVIDIA 
GTX 1080Ti  

Ubuntu 16.04  

and Caffe 

20 times 

prediction 
 in 1 

second 

Steering 

angle  

Simulation

+NA+RTI 

[49] Cui 

et.al 
(2019) 

Not 

reported 

CNN 240 hours of real data 

using SDV with 
camera, lidar, radar 

total 7.8 

million data  
with a ratio 

of 3:1:1 

 GPU-16 Nvidia  

Titan X 

 

TensorFlow 

10ms FT of SDV 

and 
pedestrian 

Simulation

+NA+RTI 

[50] 

Grigoresc

u et. al 

(2019) 

Neuro 

Trajectory 

CNN & 

LSTM 

Synthetic data-

GridSim and real data 

from the test car  

with camera, lidar, 
radar 

Not 

reported 

camera-MFC430  

Lidar-Quanergy 

M8, Radar-

ARS430 

GridSim  Not 

reported 

FT of an 

ego-vehicle 

Simulation+

NA+RWI 

[51] Jeong 

et. al 
(2020) 

Not 

reported 

LSTM based  

RNNs 

484 vehicle 

trajectories -real data 
using SDV with 

camera, lidar, GPS 

11,662 / 

4,998/-  
samples 

CPU-i7 3.2Ghz 

RAM-16 GB,  
storage-512 GB 

Not reported 1.2 s FT of 

surrounding 
vehicles 

Simulation+

NA+RWI 

[52] 
Leordean

u et. al 

(2020) 

Not 
reported 

CNN UED-Real data-21 h 
of driving videos at 

30 fps 

Not 
reported 

Nvidia  Not reported Not 
reported 

Current 
location  

and FT  

Simulation+
NA+RWI 
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In addition, to learn local state motions for SDV, Sorin 

Mihai Grigorescu et. al [50] suggest a neuroevolutionary 

technique. The suggested method employs a 

neuroevolutionary algorithm to develop neural networks that 

can forecast the upcoming motion of the vehicle by its 

present condition and sensor inputs. The technique employs 

a function of fitness to evaluate the trajectory's correctness 

and smoothness. The neuroevolutionary algorithm uses a 

population of neural networks that are randomly initialized 

and evaluated in a simulated driving environment. The 

fitness function is used to determine which individual's 

trajectory is the most fit for the following generation by 

evaluating the smoothness and accuracy of the anticipated 

trajectory. 

Similarly, Yonghwan Jeong et. al [51] suggest employing 

an LSTM-RNN to forecast the motions of nearby vehicles as 

a solution for motion planning in SDV at multi-lane turn road 

crossings. In an uncertain environment, the suggested 

method anticipates the velocity of the nearby vehicles while 

accounting for the unpredictability and variability of the 

motion. The LSTM-RNN model is equipped with the ability 

to forecast the future movements of nearby vehicles up to 

two seconds in advance and iwas developed using real-life 

vehicle trajectory information. The generated trajectory is 

reliable and optimal for the SDV to travel via the 

intersection, using anticipated trajectories as input. 

Furthermore, Marius Leordeanu and Iulia Paraicu [52] 

combine ocular localization with trajectory prediction to 

provide an approach for SDV navigation. The suggested 

approach employs a DNN to forecast the vehicle trajectory 

from visual input, and visual localization to determine the 

SDVs location in the driving environment. The authors 

created their dataset called as Urban European Driving 

(UED) Dataset and the Map, which contains 35km of driving 

data with a duration of 21 hours with LIDAR and camera 

sensors. The neural network can anticipate the vehicle's 

future course up to one second in advance after being trained 

using a UED dataset of images and matching LIDAR data. 

Even in enormous-scale situations, the approach can 

determine the exact location of the vehicle with great 

precision. 

However, all the aforementioned DL-based trajectory 

planning algorithms were trained and evaluated in their 

corresponding dataset and experimented with their 

respective implementation method, the outcomes 

demonstrated that the aforementioned algorithms were better 

performed when compared with their corresponding state of 

art algorithms. Table 5 compares technical details of recently 

available various DL algorithms in Trajectory planning for 

SDVs based on the following parameters such as type of DL 

algorithm utilized, type of input, type of output, Type of 

Dataset, Software and Hardware Utilized, Response Time 

(RT) and way of Implementation, which are more important 

for the researcher to get deep knowledge in the field of 

trajectory planning for SDVs.  

III. DETAILED SURVEY ON END-TO-END LEARNING 
FOR SDVs 

In machine learning one of the important approaches is E2EL 

in which a system learns to perform a task directly from raw 

input data to output predictions without relying on manual 

feature engineering or intermediate steps [53]. E2EL can be 

used in the context of SDV to train a neural network to 

operate a vehicle using sensory input like camera images or 

LIDAR data. The conventional method for developing SDV 

entails segmenting the issue into various modules, such as 

perception, localization, planning, and control [54]. Every 

component is designed to perform a certain function, with 

the output of a particular component serving as the input for 

the next.  

However, this modular approach requires many human 

expertise in designing and tuning each module, and it can be 

difficult to integrate the modules into a cohesive system. In 

contrast, E2EL can simplify the development process by 

allowing the system to learn the entire driving task in a 

unified framework. Training the system involves using a 

sizable dataset of input-output pairings, in which the 

intended driving behaviours, such as steering angle, 

acceleration, and braking, are produced from the incoming 

sensory data. Without taking any intermediary stages, the 

neural network learns to directly map input to output. In the 

early years some survey papers are detailed discussed 

different architecture and training methods for E2EL [55] 

also some other researchers discussed driving datasets that 

are publicly available and simulated testing platforms [56]. 

In this section we discussed different E2EL techniques for 

SDV in the aspect of various important parameters such as 

hardware stack, software stack, type of simulator utilized and 

way of implementation.E2E self driving is now conceivable 

because of the popularity of DL techniques. E2EL has shown 

optimistic outcomes in the creation of SDV. Everything 

started with an NVIDIA experiment [53], in which 

researchers used a CNN to steer a business vehicle utilizing 

just the frontal road's monocular picture as input. 

Zhengyuan Yang et. al [57] present a unique method for 

SDV that combines multi-modal multi-task control with 

picture perception. The suggested technique makes use of a 

DNN to process multiple sources of sensory data, including 

visual, LIDAR, and RADAR inputs, to predict the optimal 

control actions for the vehicle. A trained model E2EL to 

manage multiple driving tasks, such as lane keeping, 

obstacle avoidance and intersection crossing. To identify 

control actions by extracting features from the provided 

input data, the authors combine CNNs and RNNs. The 

suggested strategy combines multiple modalities of sensory 

data, which improves the robustness of the system and allows 

for more accurate control decisions. Besides this, Junekyo 

Jhung et. al [58] developed a new approach for steering 

control in SDVs. The proposed approach maps raw sensor 

information to directional commands directly using a CNN, 

eliminating the need for intermediate feature extraction 

steps. Additionally, the model includes a closed-loop 
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feedback system that adjusts the steering commands in real-

time based on feedback from a front-facing camera. 

Meanwhile, in vehicle-centric driving videos, Li Du et al. 

[59] devised a new technique for anticipating future frames 

(FFPRE). Without the need for explicit motion estimate or 

scene comprehension, the suggested solution is an E2E 

method that directly transfers previous video frames to 

subsequent ones. To determine the links between time and 

space in the entered data, the authors employ a DNN with 

both convolutional and recurrent layers. The capacity of the 

suggested method to learn intricate spatiotemporal patterns 

straight from unprocessed video data is one of its key 

advantages. This allows the model to make accurate 

predictions even in challenging scenarios, such as occlusions 

or sudden changes in the scene. Similarly, an innovative 

method for steering control in SDV is presented by Tianhao 

Wu et. al. in [60]. The suggested technique forecasts the 

appropriate steering angle for the vehicle using a complex 

neural network that considers both present and future 

spatiotemporal variables. The authors combine 

convolutional and recurrent layers to extract spatial and 

temporal characteristics from the input data, which includes 

pictures from a camera that faces forward and LiDAR data. 

The capacity of the suggested strategy to include future 

spatiotemporal aspects in the control choice is one of its main 

advantages. This allows the model to anticipate changes in 

the scene and adjust the steering angle, accordingly, 

enhancing the vehicle's performance and safety.  

Further, A system for autonomous navigation employing 

DL and a multi-camera configuration with RGB and depth 

pictures was proposed by José A. Diaz Amado et al. [61]. The 

CNN employed in the neural network produces the vehicle's 

steering and throttle commands by using RGB and depth 

pictures as inputs. The four cameras that together make up 

the multi-camera framework employed in the paper have a 

full 360 degrees of perception. The RGB and depth images 

are captured simultaneously by each camera, resulting in a 

total of eight input streams for the neural network. With the 

help of a depth sensor and a stereo camera system, depth 

pictures are produced. This study offers a potential method 

for autonomous navigation based on DL and a multi-camera 

system, which may find use in the development of SDT. 

Furthermore, using DL techniques, Chanyoung Jung et. al. 

[62] suggested a novel method for SDVs. The goal of this 

approach is to make SDVs more reliable and accurate by 

estimating the time-to-line crossing (TLC) and using this 

information to change the SDV's speed and trajectory. One 

crucial part of SDV is the TLC, which calculates how long it 

takes the vehicle to reach the lane barrier. Based on data from 

the vehicle's sensors, including its cameras and LIDAR, the 

proposed system uses a DNN to forecast the TLC. Then, 

based on the anticipated TLC, the vehicle's speed and 

trajectory are modified to keep it in its lane. 

Additionally, a novel method for SDT is presented by 

Myoung-jae Lee et. al. [63] employing an E2E DL algorithm. 

The suggested method makes use of a CNN that receives 

input from the vehicle's raw sensors data, such as front-

facing camera pictures and steering angle data. Without 

explicitly extracting and selecting features, the CNN is 

trained to output the appropriate steering angle for the 

vehicle depending on the input data. Further, incorporating 

E2EL, Tanmay Vilas Samak et al. [64] provide a novel 

method for SDV. The recommended approach makes use of 

a DNN to discover an association between sensor data and 

vehicle control outputs. The neural network is trained using 

a technique called behavioural cloning, where the network 

has been trained to replicate the actions of a human driver. 

The authors give a thorough explanation of the approach's 

neural network architecture, this has multiple dense and 

convolutional layers. The approach was able to successfully 

navigate the vehicle through various scenarios, such as 

Simplistic driving, rigorous driving, and obstacle avoidance.  

Meanwhile, Simone Mentasti et. al [65] propose a novel 

approach to lateral control of SDVs using a multi-state E2EL 

framework. The author argues that traditional lateral control 

methods for SDVs, such as model-based approaches or rule-

based approaches, have limitations in terms of robustness 

and adaptability to different driving conditions. E2EL 

techniques, in contrast, have demonstrated promising 

outcomes in several applications. These methods learn 

directly from unprocessed sensor inputs to regulate outputs. 

The multi-state framework consists of two sets of state-

specific neural networks, where each network is responsible 

for a specific lateral control task, such as anticipating 

situations and preserving the vehicle lane position by 

adjusting the steering angle. Furthermore, for forecasting 

steering angles in SDV, D V Prasad Mygapula et al. [66] 

developed a method to understand the relationship between 

sensor input data and appropriate steering angles, the 

suggested technique employs a CNN. The CNN is trained 

using the SullyChen dataset, which consists of pictures taken 

with a front-mounted camera and the accompanying steering 

angles. Test results on a model vehicle powered by batteries 

show that the recommended approach can accurately predict 

steering angles, with an R2 score of 0.819 and a test loss of 

0.0354.  

In addition, a machine learning method for E2E motion 

planning in SDV with an optical flow distillation method was 

deployed by Hengli Wang et al. [67]. Based on input data 

from a camera positioned on the vehicle, the suggested 

technique employs a CNN to forecast steering angles and 

speeds. The CNN is trained using a NuScenes dataset that 

includes both image frames and ground truth steering and 

speed values. The suggested technique also uses optical flow 

distillation, which is a method for distilling optical flow 

information into a compact representation that can be applied 

to increase the precision of the direction and speed 

estimations. A closed loop CARLA simulated environment 

was used to assess the suggested methodology, and the 

results demonstrate its accuracy, which has a Success Rate 

of 88.67% and a Right Lane rate of 93.16%.  

Furthermore, using multi-modal sensor fusion and DNN 

to classify scenes, Zhiyu Huang et al. [68] created a DL 

technique for E2E based SDVs. The proposed approach 
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combines data from multiple sensors, including cameras, 

lidar and odometer, to provide the vehicle ability to sense its 

surroundings and make decisions to drive. The DNN used in 

the perception module is a CNN that is experimented on a 

CARLA simulator dataset of labelled sensor data. The 

network's goal is to discover the connections between the 

incoming sensor information and the related scene 

representation. A distinct DNN, used by the decision-making 

module, receives the scene representation as input and 

provides steering and speed directives 

Besides this, the use of LIDAR point cloud data was 

suggested by Xianyong Yi et. al [69] in their unique self 

driving approach. The author presents a DL framework that 

processes LIDAR data in an E2E way, enabling steering 

decisions to be made by the vehicle without the use of extra 

sensors or human input. Furthermore, Tinghan Wang et. al 

[70] introduced a novel approach for SDVs that is 

independent of irrelevant roadside objects, using an auto-

encoder architecture. The author offers a DL method that 

processes camera images in an E2E way, allowing the 

vehicle to make direction-finding decisions without the need 

for additional sensors or human intervention. The study also 

includes an extensive analysis of the network's performance, 

showing that it is robust to variations in lighting conditions 

and different road environments. 

Additionally, Jie Hu et. al [71] proposed a Bilateral 

Guide Network (BGNet) for enhancing scene understanding 

in self driving using DL. The Driving Affordances Path 

(DAP) and Visual Guide Path (VGP) are part of BGNet. The 

author aims to develop a framework that can process sensor 

data from front camera images to generate an in-depth 

awareness of the surroundings, which can be used for safe 

and reliable self driving. For semantic segmentation, the 

author uses a fully convolutional network (FCN)-based 

DNN. The FCN is trained on a CARLA simulator with an 

autopilot mode dataset of annotated images utilizing both 

supervised and unsupervised learning strategies. Meanwhile, 

A DL model for anticipating the steering behavior of SDVs 

utilizing a temporal and spatial attention mechanism is put 

forth by Lei Han et al. [72]. The suggested model is an E2E 

framework that receives a series of pictures from the SDV's 

front-view camera and outputs the associated steering angle. 

The objective of the algorithm is to accurately forecast the 

steering angle by learning temporal as well as spatial data 

from the input images. The developed model employs CNN 

architecture to learn spatial characteristics. The task of 

removing important elements from the source images 

belongs to CNN. The collected attributes are then supplied 

into an LSTM network, which is at the forefront of capturing 

the temporal relationships among the input images. At each 

time step, the suggested model employs a selective attention 

mechanism to concentrate on specific parts of the input 

image. By applying the attention mechanism in both spatial 

and temporal dimensions, the model is able to focus on 

essential areas of the image and time steps that are crucial for 

steering angle prediction. 

Besides this, Satya R. Jaladi et. al [73] developed a 

gamification framework to train and evaluate E2E models 

for learning human highway driving. The developed 

framework consists of a game-like environment where the 

player (i.e., the model is trained) drives a car on a highway 

and earns rewards for completing tasks such as staying 

within lanes, avoiding collisions, and keeping a secure 

distance from other vehicles. The suggested framework 

demonstrates how gamification can enhance E2E systems for 

human roadway driving in terms of accuracy and efficacy. 

Meanwhile, an incremental E2EL strategy for lateral control 

in SDV was proposed by Jaerock Kwon et al. [74]. The 

suggested method makes use of a DNN architecture to 

extract the correct steering angle from pictures captured by a 

vehicle's frontal camera. The information is gathered from 

the CARSIM simulation tool employing HIL, This includes 

an actual motorsport wheel with shifting gears and pedals.  

The suggested model was simulated using the Gazebo/ROS 

back-end OSCAR (Open-Source Robotic Car Architecture 

for Research and Education) simulator.  

Further, by combining data from several sensors to create 

a 3D representation of the environment, Nguyen Thi Hoai 

Thu et al. [75] created a technique for motion planning in 

SDV. The suggested method generates the appropriate 

lateral control angle and velocity for the vehicle using an 

E2E RegNet Y 16GF DL model. The sensor fusion is 

achieved by implementing a transformer encoder. This 

technique fuses LiDAR and camera data to accurately detect 

and track obstacles in the vehicle's path. The vehicle's safe 

and effective trajectory is then planned to use the 3D map 

produced from the sensor data Furthermore, a novel E2E 

approach to SDV is put out by Oskar Natan et al. [76] that 

makes use of systems with multiple agents and semantic 

depth cloud mapping. The goal of the project is to create a 

system that is resilient to variations in weather and lighting 

and can function in intricate and dynamic surroundings. The 

suggested system relies on a DNN framework that accepts a 

collection of RGB images, LiDAR point clouds, GPS, and 

Speedometer data as input. The authors use a semantic depth 

cloud mapping approach to generate a 3D representation of 

the environment that incorporates both geometric and 

semantic information. The system is able to operate in 

intricate and dynamic surroundings thanks to the 

recommended network, which is also resistant to variations 

in weather and lighting. However, all the aforementioned 

DL-based E2EL algorithms were trained and evaluated in 

their corresponding dataset and experimented with their 

respective implementation method, the outcomes 

demonstrated that the aforementioned algorithms were better 

performed when compared with their corresponding state of 

art algorithms.
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TABLE 6 

TECHNICAL COMPARISON OF DIFFERENT DEEP LEARNING ALGORITHMS IN END-TO-END LEARNING FOR SDVS 

Paper with 

Year 

Proposed 

 method 

DL 

algorithm 

Dataset Input data  Pre-

processed 
Image Size 

Simulator Hardware Software 

frameworks 

Output Implementa

-tion 

[57] 

Zhengyuan  

Yang 
(2018)  

Multimodel 

MultiTask 

vehicle 
control 

(MMVC) 

CNN Udacity 

and SAIC 

RGB image 

and actual 

speed 

200X66 Udacity Not 

Reported 

Not 

Reported 

Steering 

angle 

and 
Speed 

control 

Simulation

+NA 

[58] 
Junekyo  

Jhung 

(2018)  

DAVE_2S
KY 

CNN Real data 
Set 2h of 

driving in 

Yonsai 
University 

Image with 
size of  

160 × 90 

160X40 Prescan Sekonix 
camera 

DriveTm 

PX2 
Computer 

Prescan 
with Caffe 

and 

MATLAB 
Simulink 

Steering 
wheel 

angle 

Simulation
+RWI 

[59] Li Du 

(2019)   

FFPRE CNN with 

RNN 

DR 

(eye)VE 
NVIDIA 

RGB image 224X360 DR 

(eye)VE 

8G GTX 

1080 GPU 

PyTorch Steering 

angle 

Simulation 

[60] 
Tianhao 

Wu (2019)  

MSINet 
CNN with 

LSTM 

Udacity  Three front-

view camera 

images 

480X640  

3X480X640 Udacity  4 Geforce 

GTX Titan 

GPU 

Simulation 

Pytorch 

Steering 

angle 

Simulation

+RWI UESTC  real-time 
1280X1024 

3X480X640 NA single 
Geforce 

GTX Titan 
GPU 

ROS 

[61]José A. 

Diaz  
Amado 

(2019)   

Modified 

Pilotnet 

CNN V-REP 

simulator 
Data Set 

Three front-

view cameras 
output merged 

as a single 

image 

66x200 V-REP 

simulator 

1/4 scaled 

Electric car 
with Jetson 

TX2 

Developer 
Kit 

ROS in 

Linux 
16.04 OS 

with 

Python/C+
+ 

Steering 

angle 

Simulation

+RWI 

[62] 

Chanyoung  
Jung (2020)  

Time to 

Line 
Crossing 

(TLC) 

bi-

CLSTM 

Udacity 

and Custom 
test  

Three front-

view camera 
images 

640X480X3 Udacity 2 NVIDIA 

RTX-
2080TI 

GPU 

PyTorch Steering 

angle 

Simulation

+RWI 

[63] 
Myoung-

jae  

Lee (2020)  

Not 
Reported 

CNN with  
LSTM 

 Euro Truck 
Simulator 

dataset 

300Gb 

One front 
view camera 

image 

80X200  Euro 
Truck 

Simulator 

AMD 
Ryzen 

Threadripp

er 2950x, 
RAM-128 

GB, GPU-

RTX 
2080Ti 

(x2),1TB 

SSD + 8TB 
HDD 

Euro Truck 
Simulator 

with 

LogitechG2
9 

Steering 
angle 

HIL 

[64] 

Tanmay 
Vilas  

Samak 

(2020) 

Not 

Reported 

CNN Udacity 

Modified 
Environme

nt  

One front 

camera image 
320×160 

64X64 Unity 

game 
engine 

CPU-Intel 

I7-8750H 
GPU-

NVIDIA 

RTX 2070  

Udacity, 

Python 
3.6.8, 

Tensorflow 

1.14.0 

Speed, 

Throttle, 
Brake 

and 

Steering 
Angle 

Simulation

+NA 

[65]Simone  

Mentasti  
(2020)  

Two CNN CNN Monza ENI 

circuit 

Front camera 

image 

1)200X66 

2)672X376 

Assetto 

Corsa 

GPU-

Nvidia 
1660Ti 

Not 

Reported 

Scenario 

and 
steering 

angle 

Simulation 

[66]D V 

Prasad 

 Mygapula  

(2021)  

CNN 

model 2 

CNN Sully Chen Front camera 

image 

370X110 

250X70 NA Model 

Electric Car 

with 

Webcam 
and Jetsen 

TX1 

processor 

Not 

Reported 

Steering 

Angle 

Simulation

+RWI 

[67]Hengli 

Wang  

(2021)  

IVMP CNN NuScenes Surrounding 

view images 

Not 

Reported 

CARLA 

simulator 

2 NVIDIA 

GeForce 

RTX-
2080TI 

GPU 

Not 

Reported 

FT of 5s Simulation 

[68]Zhiyu 
Huang  

(2021) 

MSF_SU CNN CARLA 
urban scene 

Front camera 
image 

800X600 

224×224 CARLA 
simulator 

NVIDIA 
RTX 

Not 
Reported 

Steering 
angle 

and 

Simulation 
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2080Ti 

GPU 

Speed 

control 

[69]Xianyo

ng Yi 

(2022) 

Modified  

Pointnet++ 

DCNN 3 hours and 

300000 

frames 

LiDAR NA CARLA 

simulator 

GPU - 

NVIDIA 

GeForce 
RTX 3050 

Ti  

Ubuntu18.0

4 Python 

3.7, 
Pytorch 

Steering 

Angle 

Simulation 

[70]Tingha
n Wang  

(2022) 

Auto-
Encoder 

(ANN) 

CNN PreScan 
dataset 

Front camera  
image size 

240 × 320 × 3 

50 × 50 × 3 PreScan Not 
Reported 

TensorFlow Steering 
Angle 

Simulation 

[71]Jie Hu 

(2022) 

Bilateral  

Guide  
Network  

(BGNet) 

CNN with  

GRU 

autopilot  

of CARLA   
data set of  

6000 

images 

Front Camera 

image 

Not 

Reported 

CARLA 

simulator 

single RTX 

3090 

Not 

Reported 

Speed, 

Steering, 
Throttle, 

Brake 

Simulation

+NA 

[72]Lei 

Han (2022) 

V + A + 

SAtt +  
Tatt 

CNN with  

Conv 
LSTM 

Comma2k1

9 
 and 

Udacity 

25,832 

sequence 

samples  

 image size 

 1164X 874 
and 1920 X 

1200 actual 

steering wheel 

angle 

80 X 240 X 

3 

Udacity GeForce 

RTX  
2080Ti 

GPU. 

TensorFlow Steering 

Angle 

Simulation

+NA 

[73]Satya 
R. Jaladi 

(2022) 

Modified 
VGG 19 

CNN Grand 
Theft  

Auto V 

data set 

70, 000 
images 

480 P 

resolution 

200x60 Grand 
Theft 

 Auto V  

Xbox 
controller, 

mobile 

RTX  
2060 with 

6GB 

TensorFlow  
2.0, Python 

steering 
Angle  

and 

throttle 

Simulation 

[74]Jaerock 
Kwon  

(2022) 

(Bio-
Inspired  

Machine  

Intelligence  
Network) 

BIMINet  

CNN CARSIM 
simulator 

data set 

front camera  
image size  

800X151 

160X160 OSCAR 
and 

Gazebo/R

OS 
simulator 

CPU: Intel 
i7-6700 

3.40 GHz, 

RAM: 32 
GB, GPU: 

NVIDIA 

GeForce 
GTX745 

ROS with 
Ubuntu18.0

4.5 LTS 

OS, CUDA 
9 and 

cudnn 

7.1.2,  

Steering 
Angle 

HIL 

[75]Nguyen 

Thi Hoai 
Thu (2023) 

pre-trained  

RegNet Y 
16GF 

CNN_LS

TM 

Longest6  

dataset 
from 

 CARLA  

simulator 

camera 

images 
704 × 160 × 3 

and LiDAR 

point clouds 
256 × 256 × 2 

 704 × 160 CARLA 

simulator 

Not 

Reported 

Pytorch 

1.11 
CUDA 

11.3. 

Depth 

Estimati
on, 

FT, BEV 

semantic 
Estimati

on 

Simulation

+NA 

[76]Oskar 
Natan 

(2023) 

Not 
Reported 

GRU CARLA  
simulator  

modified  

dataset 

RGBD camera 
image 

300×400, 

GPS, and 
speedometer 

256 × 256 CARLA 
simulator 

NVIDIA 
GeForce  

RTX 3090 

 
Ubuntu 20 

PyTorch 

level of 
steering, 

throttle 

and  
brake 

Simulation
+NA 
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Table 6 compares technical details of recently available 

various E2EL techniques for SDV depending on the 

following parameters such as type of DL algorithm utilized, 

type of input, pre-processed image size, type of output, Type 

of Dataset, simulator, Software frameworks, Hardware 

Utilized and way of Implementation, which are more 

essential for the researcher to learn in-depth information 

about the topic of E2EL for SDVs.  

Further, the E2EL approach are divided into two primary 

types based on the learning approaches employed: Imitation 

Learning (IL) through supervised learning and 

Reinforcement Learning (RL), which integrates 

unsupervised learning techniques. 

 
A. IMITATION LEARNING 

IL is a machine learning technique used in the development 

of SDV to help them learn from expert demonstrations. In 

this context, expert demonstrations are often supplied by 

human drivers or simulated scenarios in which human-like 

driving behaviour is used as examples for the SDVs to 

replicate. IL enables SDVs to learn how to navigate 

complicated environments, follow traffic rules, and manage 

a range of driving situations. IL further classified into three 

categories   as Behaviour Cloning (BC), Direct Policy 

Learning (DPL) and Inverse Reinforcement Learning (IRL) 

 
1) BEHAVIOUR CLONING 
The most common method of IL in the field of SDV is known 

as BC, which has emerged as the dominating strategy [53], 

[77]. Within the framework of this approach, After using 

expert trajectories to train the model, the agent uses a 

classifier/regressor to replicate the policy. In order to learn 

the intended policy, the BC technique is a passive approach 

that does not involve active participation. Rather, it simply 

observes the entire command execution process. This 

presupposes that the state-action pairs that comprise each 

and every trajectory are independent of one another. 

Bojarski et al. [53] pioneered BC, training a CNN to 

predict steering commands from monocular camera images 

for lateral control. However, it lacks longitudinal control. In 

contrast, Codevilla et al. [78] introduced conditional 

imitation learning (CIL), which includes both lateral and 

longitudinal control. Using inputs like images and high-level 

commands, CIL produces longitude and latitude control 

commands, marking a milestone in self driving imitation 

learning with CNNs. 

Adding to the CIL framework [78], researchers combine 

geographical information, preplanned path, or point clouds 

[79], [80], and [81] to improve robustness and generalisation. 

These approaches are not interpretable, even with 

advantages like faster feedback and less uncertainty. In order 

to lessen this, layers of intermediate representation are 

added. The direct perception method is proposed by Chen et 

al. [82] and predicts affordances in urban self driving 

scenarios. Low-level controller operations are informed by 

these affordances, which are displayed in Bird's Eye View 

(BEV). This is furthered by Sauer et al. approach [83] 

Conditional Affordance Learning (CAL) shown in figure 7. 

which excels in complex urban traffic and uses video data 

and high-level commands for intermediate representations. 

Additionally, utilising LiDAR data and HD Maps, Urtasun's 

team presents interpretable end-to-end planners [84], [85] 

that enable safer trajectory predictions in comparison to 

using monocular pictures alone. 
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FIGURE 6. CAL model Proposed by [83], The camera picture and 
instructions are sent to the CAL agent by CARLA. The last N maps are 
stored while the image is transformed into a feature map. These aid in 
affordance prediction along with instructions. The way that temporal 
features are used varies among tasks. CARLA's updates and 
observations are computed by the controller. 

The key characteristic of the BC method is its reliance on 

expert-generated training examples, as a result, a portion of 

the states experienced during policy execution make up the 

training dataset. Consequently, if the dataset suffers from 

bias or overfitting, the method's ability to generalize is 

constrained. Additionally, when the agent encounters 

unfamiliar states, learning the appropriate recovery 

behaviour becomes challenging. 

 
2) DIRECT POLICY LEARNING  
Direct Policy Learning (DPL) is a training methodology that 

originates from BC. DPL operates by evaluating the existing 

policy and obtaining training data that is more suitable for 

promoting self-optimization. In contrast to BC, DPL makes 

use of professional driving trajectories to help the agent fix 

present mistakes. This attribute of DPL mitigates the 

constraints of BC that arise from insufficient data. We give 

an outline of some DPL approaches in the section that 

follows. 

Ross et al. [86] introduced Dataset Aggregation 

(DAgger), an online imitation learning technique based on 

the Follow-the-Leader algorithm [87]. DAgger uses every 

state-action combination it encounters to actively modify the 

principal classification tool or regression tool, viewing each 

validation repetition as an e-learning example. Which is 

shown in figure 8(a). Nonetheless, the discrepancy between 

the policy space and the learning space can impair its 

learning efficacy. In response, He et al. [88] proposed 

DAgger by Coaching shown in figure 8(b), which employs a 

coach to demonstrate easily learnable policies. These 

demonstrated policies gradually converge to the true label. 

The coach produces a balanced policy that is noticeably 
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superior than the novice's anticipated actions but not 

appreciably worse than the real controlling signal. 

π

π* 

π

π* 
π' 

(a) DAgger (b) Dagger by coaching 
 

FIGURE 7. Dagger methods for SDVs proposed by [86], [88]  

 

Other researchers have highlighted drawbacks in DAgger 

methods [86], [88], such as inadequate generalisation, 

imprecise gathering of data, and ineffective query 

procedures. To address these issues, Zhang et al. [89] 

introduced the SafeDAgger procedure, focusing on 

enhancing query efficiency and reducing reliance on label 

accuracy. Additionally, Hoque et al. [90] proposed the 

ThriftyDAgger framework, incorporating human interaction 

in unusual circumstances, while Yan et al. [91] presented a 

new DPL training initiatives for mapless scenarios' 

navigation tasks, both aimed at improving model 

generalization and robustness. 

DPL is a web-based learning policy that is iterative and 

reduces the amount and distribution of datasets needed. It 

also makes it easier to update policies over time by 

efficiently removing negative data. 

 
3) INVERSE REINFORCEMENT LEARNING  
In order to overcome the shortcomings of the 

aforementioned techniques, IRL explores for the 

fundamental causes of the association between inputs and 

outputs. IRL takes a new approach to training model for 

different tasks. Instead of needing pre-programmed rewards 

or perfect demonstrations, IRL observes how an expert 

performs a task (their "trajectories") and tries to figure out 

what motivates them (the reward function). It then uses this 

inferred reward function to train a policy (its decision-

making system) to achieve similar goals. IRL has three main 

approaches: max-margin, Bayesian, and maximum entropy 

methods. 

The max-margin method optimises reward functions by 

increasing the difference between optimal and suboptimal 

policies using expert trajectories. Several methods linearly 

aggregate data to show reward functions as independent. 

Andrew Wu [92] developed three reward function refinement 

techniques and the first max-margin IRL approach. Pieter et 

al. [93] optimised Wu's method to uncover latent weight-

feature links by treating expert reward functions as explicitly 

created linear combinations of known features. 

Quality and distribution of expert trajectories limit these 

techniques. Umar et al. [94 propose game-theoretic IRL 

multiplicative weights for apprenticeship learning. The agent 

receives feature weight policy knowledge and updates the 

reward function using linear programming to reach a 

stationary policy. An interpretable planning system proposed 

by Phan-Minh et al. [95] shown in figure 9. It generates 

trajectory, filters safety, and scores trajectory. Perceptual 

data predicts future trajectories, an interpretable safety filter 

assures basic safety, and DeepIRL assesses predicted 

trajectories. [96] and [97] introduce preference and inference 

formulations to allow users choose actions based on 

preferences, enhancing model performance. 

Bayesian approaches, the second element of IRL, 

maximise reward posterior distributions by using the 

optimised trajectory or prior distribution. Ramachandran et 

al. [98] proposed the Bayesian IRL model, using previous 

distributions to infer a posterior distribution of the predicted 

reward variable. Levine et al. [99] added a kernel function to 

the Bayesian IRL model [98] to advance reward prediction 

and unseen driving performance. Moreover, Brown et al. 

[100] use sampling to construct a Bayesian IRL model, 

estimating upper bounds on return differences without the 

need for a reward function by utilising expert trajectories. In 

a different study, Palan et al. [101] provide the DemPref 

model, which addresses efficiency concerns in conventional 

approaches and improves query quality by using trajectory 

data for a simple reward function and active query 

development. Notably, DemPref does not depend 

exclusively on expert trajectories at the highest level. IRL's 

third component is the maximum entropy approach, which 

estimates the reward function during optimisation. 
Maximum entropy methods are better for continuous 

spaces than prior IRL methods and may reduce expert 

trajectories' negative effects. Ziebart [102] presented the 

Maximum Entropy IRL model, which mitigates noise and 

poor behaviour in the expert trajectory, comparable to [92]. 

The agent linearly maps features to rewards to optimise the 

reward function under supervision. 
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FIGURE 8. Deep IRL trajectory scoring methods for SDVs proposed by [62] 

TABLE  7 SUMMARY OF IMITATION LEARNING TECHNIQUES 

Method Performance Advantages Disadvantages Limitations Implemented In 

Behavior Cloning 

(BC) 

High (when expert 

demonstrations are 
good) 

• Simple to 

implement It learn 

complex behaviors 

• Relies on good quality expert 

demonstrations  

• It is susceptible to errors in the 

expert demonstrations 

• It might not perform well to 

unobserved circumstances 

[53], [77] – [85] 

Direct Policy 

Learning (DPL) 

Potentially high, but 

requires careful 
design of reward 

function 

• Can learn complex 

behaviors 

• It incorporates 

feedback from a 
human expert 

• Can be susceptible to errors in 

the expert demonstrations 

• It is computationally expensive 

• It require high computing 

resources. 

• Requires careful design of 

the interactive demonstrator 

[86] – [91] 

Inverse 

Reinforcement 
Learning (IRL) 

It is good, but requires 

defining the desired 
behavior 

• It learns from 

human preferences 

• Requires defining a reward 

function that captures the desired 

behavior 

•  It is sensitive to the choice of 

reward function 

• Can be sensitive to the 

choice of reward function 

• Defining the desired 

behavior can be challenging 

[92] – [108] 

Many studies [103], [104], [105] have used maximum 

entropy IRL in real world SDV application. The algorithm 

Generative Adversarial Imitation Learning (GAIL) [104] is 

crucial to this subject. Using a generative adversarial 

network (GAN), GAIL model’s expert trajectory 

distributions to reduce state drift from limited datasets. 

Expert trajectory reconstruction and policy development 

allow GAIL to function like human drivers in particular 

circumstances. Co-GAIL [106], InfoGAIL [107] and 

Directed-InfoGAIL [108], build upon the groundwork laid 

by [104] and provide competitive outcomes in numerous 

application fields. 

IRL offers numerous valuable contributions to SDV 

technology. Nevertheless, similar to the approaches 

mentioned earlier, it faces challenges in addressing rare 

cases. Enhancing the robustness and interpretability of IRL 

effectively represents a forthcoming area of research. 

IL experts leads to action. Summary of above discussed 

IL methods shown in Table 7. It may be less possible to 

generalise a dataset with overfitting or an uneven 

distribution. The agent acts erratically when led to an 

uncertain state. A lot of academics use virtual and real data 

along with data enrichment to improve dataset dispersion. 

These initiatives guarantee generalizability and 

competitiveness of the methods. 

 
B. REINFORCEMENT LEARNING 

IL techniques necessitate a large amount of personally 

labelled data, and drivers may make different decisions in 

identical situations, causing training uncertainty. 

Researchers avoid labelled data with RL algorithms for 

E2EL. RL trial-and-error agents maximize environmental 

numerical rewards. In constant interaction with the 

environment, the agent learns the best goal-achieving policy. 

According to this framework, two primary methods in RL 

are utilized to attain optimal policies: value-based RL and 

policy-based RL. Moreover, hierarchical reinforcement 

learning (HRL) and multi-agent reinforcement learning 

(MARL) are considered effective strategies derived from 

these approaches, showing promise in resolving intricate 

problems and aligning well with real-world driving 

situations. Utilizing RL techniques for training SDVs has 

emerged as a burgeoning trend in E2EL for SDV research. 

 
1) VALUE BASED RL 
Value-based RL seeks to evaluate various activities in a state 

and provide a value to every action according to the 

anticipated reward it provides. The agent gains the ability to 

associate actions and states with rewards, and it uses this 

knowledge to make the best choices.  
Among value-based techniques, Q-learning [109] is well-

known. Mnih et al. [110] introduced the first DL technique 

based on Q-learning, which learned control signals straight 

from screenshots.
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FIGURE 9. architecture of Conditional DQN [112] 

In order to address stability difficulties with high-

dimensional perception data, Wolf et al. [111] also integrate 

Q-learning into SDV systems, defining driving manoeuvres 

and selecting them based on picture information. 

The suggested conditional DQN [112] technique shown 

in figure 10. It improves predictive stability and, in certain 

cases, achieves performance close to human driving. 

Alizadeh et al. [113] use a DNN and a DQN agent to make 

high-level decisions while dynamically striking a balance 

between safety and agility. By merging DQN from control 

model, Ronecker et al. [114] suggest a harmless navigation 

technique for cars on highways, exhibiting effective and 

SDV behaviour in road traffic circumstances. 

Constrained Policy Optimisation (CPO) [115] is a all-

purpose algorithm that guarantees near-constraint 

satisfaction in each iteration, responding to security concerns 

in E2EL for SDV. Li et al. [116] incorporate a risk awareness 

algorithm for safer lane changes into DRL frameworks. 

Chow et al. [117] present safe policy optimisation techniques 

that tackle issues in constrained Markov decision processes 

(CMDP) by employing a Lyapunov-based methodology 

[118]. By combining policy and neural barrier certificate 

learning, Yang et al. [119] create a model-free safe 

reinforcement learning algorithm. Mo et al. [120] use Monte 

Carlo Tree Search to lessen risky actions when doing 

overtakes on roads. 

 
2) POLICY - BASED RL 
The value-based technique only allows for discrete 

commands, but SDV necessitates continuous control for 

fine-grained modifications. Policy-based approaches, on the 

other hand, perform well in multidimensional actions 

environments with continuous instructions, providing 

stronger convergence and investigation capabilities 

compared to value-based methods. 

Implementing RL in real-world SDVs presents considerable 

hurdles. Kendall et al. [121] proposed actor- critic algorithms 

shown in figure 11. It is used the Deep Deterministic Policy 

Gradient (DDPG) algorithm [122]to achieve human-level 

effectiveness for lane-following with only monochromatic 

photos. Wang et al. [123] proposed a solution based on 

human expertise lane-change policy that is suitable to single 

or numerous vehicles and doesn't depend on V2X 

interaction. 
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FIGURE 10. Actor – Critic Algorithm proposed by [121] 

To address crowded traffic conditions, Saxena et al. [124] 

used the proximal policy optimisation (PPO) approach [125] 

to train an enforcement policy by simulating relationships 

with other vehicles with the aim to minimise crashes and 

improve the comfort of travellers. Ye et al. [126] enhanced 

their work by using PPO to automate switching lanes on real 

highways, assuring avoidance of crashes and seamless 

driving. Other research has demonstrated [127], [128] the 

effectiveness of PPO-based RL technique in E2EL for SDV, 

with enhanced policy learning efficiency and trajectory 

exploration diversity. 

Learning RL guidelines from scratch can be tedious. 

Mixing RL with techniques such as IL and curriculum 

learning offers a viable approach. Liang et al. [129] used IL 

and DDPG to improve exploration effectiveness in 

continuous space, offering a configurable gating system for 

centralised management. Tian et al. [130] employed RL to 

learn from expert knowledge in following trajectory tasks, 

adjusting them with both IL and continual RL algorithms. 

Huang et al. [131] improved the training effectiveness of 

RL algorithms by incorporating human  
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FIGURE 11. Hierarchical RL Architecture proposed by [138]  

prior experiences, solving the long-tail problem of SDVs 

through professional human expertise. Wu et al. [132] 

suggested a human guidance-based RL technique that 

prioritises knowledge replay, which improves effectiveness 

and efficacy in challenging circumstances. Hence, enhancing 

driving task effectiveness may necessitate combining several 

strategies and creating training techniques tailored to 

particular tasks. 

 
3) HIERARCHICAL RL 
While RL techniques demonstrate promise in many areas, 

they are criticised for their difficult training procedure, 

which is especially problematic in SDVs because of dynamic 

circumstances and multidimensional input information, 

which result in lengthy period of training and utilisation of 

resources [133]. To tackle this, HRL divides the main job 

into a hierarchy of smaller responsibilities, each with a 

distinct objective and set of rules. The agent can handle 

lesser-sized subproblems due to this hierarchical 

organisational structure, which lowers learning difficulty and 

improves manageability. 

For lane-changing tasks, Chen et al. [134] recommend a 

two-level approach in which the low-level system carries out 

the process of selected instructions, while the high-level 

system decides whether to carry out a lane shift. 

Furthermore, [135] and [136] extended the research based on 

methodology [134] by integrating additional data, such as 

vehicle heading angle, speed, and position, to improve the 

effectiveness of the low-level control system. These 

approaches present viable ways to create reliable and secure 

SDVs capabilities. 

The body of research on HRL's ability to generalise is 

growing. Using a high-level layer and a kernel-based lowest-

squares policy repetition technique, Lu et al. [137] present an 

HRL technique for self-deciding and mobility management 

in unpredictable traffic situations shown in figure Z. To 

improve model generalizability, Duan et al. [138] split 

mobility responsibilities into three different models using a 

centralised policy network. Building on earlier research, 

Cola-HRL [139] combines a continuous-lattice state space 

representation, low-level controller, and high-level planner 

to provide higher making decisions efficiency across a range 

of scenarios as in comparison with state-of-the-art 

techniques. 

 
4) MULTI-AGENT RL 
MARL addresses situations in which heterogeneous traffic 

players engage in mutual influence, thereby substantially 

impacting one other's policies [140]. Others' actions in 

single-agent systems frequently conform to predetermined 

guidelines, which results in overfitting and determinism 

regulations [141]. MARL commonly uses Decentralised 

Partially Observable Markov Decision Processes (DEC-

POMDPs) with the goal of learning decision-making 

strategies for multiple agents. However, the rapid growth of 

the state space with agent numbers is a barrier for Multi-

Agent System (MAS) [142] training. 

Designing efficient learning algorithms is one way of 

dealing with dimensionality problems. In order to empower 

both collaborative and adversarial endeavours, Kaushik et al. 

[143] use parameter-sharing Deep Deterministic Policy 

Gradient (DDPG) for twin assignments, injecting 

assignments into the observation space. Wang et al. [144] 

combine the exchange of graph data across agents in a 

variety of circumstances, utilising Proximal Policy 

Optimisation (PPO) to generate actions continuously and 

permitting interaction among vehicles within a 

predetermined range. 

MARL provides a global viewpoint for multi-vehicle 

management, whereas Reinforcement Learning (RL) for 

lane-changing decisions is mostly single-agent oriented. In 

mixed-traffic highway circumstances, Zhou et al.  
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TABLE 8 SUMMARY OF REINFORCEMENT LEARNING TECHNIQUES 

Method Performance Advantages Disadvantages Limitations Implemented in  

Value-Based RL 

(e.g., Q-Learning) 

Good for simple 

tasks 
• Easy to implement 

• It learns from trial and 

error 

• Slow convergence, Curse of 

dimensionality (high 

dimensional state space)  

• Difficulty in handling sparse 

rewards 

• Not suitable for complex 

driving scenarios with high-

dimensional state spaces 

[109 – [120] 

Policy-Based RL 

(e.g., DDPG, PPO) 

High potential 

for complex 

tasks 

• Efficient learning 

• It handles continuous 

control problems 

• Sensitive to hyperparameter 

tuning 

• It is prone to instability 

• Requires careful design of the 

policy architecture and 
exploration strategy 

[121] – [132] 

Hierarchical RL Can handle 
complex tasks 

with sub-goals 

• Decomposes complex 

tasks 

• It improves learning 

efficiency 

• Increased complexity, It 

Requires defining sub-goals 

and reward structure for each 

level 

• Designing hierarchical 

structure and reward functions 

can be challenging 

[133] – [139] 

Multi-Agent RL 

(MARL) 

Suitable for 

interactions with 
other vehicles 

and pedestrians 

• Considers interactions 

with other agents 

• It improves decision-

making in multi-agent 

environments 

• High computational 

complexity, Difficulty in 

defining reward functions for 

cooperation 

• Requires significant 

computational resources and 

careful design of reward 

functions to encourage 

cooperation 

[140] – [148] 

[145] discuss SDV lane shifts in conjunction with 

human-driven vehicle judgements. MARL approaches seem 

promising for handling complicated planning and decision-

making challenges, even beyond lesser assignments. Chen et 

al. [146], for example, train agents to avoid crashes in 

scenarios with time-critical converging highways. 

Giving credit is important in collaborative systems with 

multiple agents. Using a collaborative policy learning 

technique, Han et al. [147] offer a reward shifting 

mechanism to promote permanent cooperation between 

SDVs. Peng et al. [148] achieve higher performance across 

several measures by incorporating psychological 

socialisation principles into Coordinated Policy 

Optimisation (CoPO) shown in figure X for Self-Driven 

Particles (SDP) structures. 

Although RL is popular for self-directed learning, 

insufficient sample effectiveness persists as a problem. 

While deep neural networks help with approximation of 

functions and learning representations, yet interpretability 

remains tough. Summary of Different RL methods shown in 

Table 8.  

IV. PRACTICAL ENABLERS IN SDV DEVELOPMENTS 

Practical enablers like datasets and simulators play crucial 

roles in the development and advancement of SDV 

technologies. These tools provide essential resources and 

environments for training, testing, and validating SDV, 

ultimately contributing to the safe and efficient deployment 

of SDVs on public roads. 

A. DATASET 

Datasets are collections of labelled sensor data captured from 

real-world driving scenarios. These datasets contain various 

types of information, including images, lidar scans, radar 

readings, and GPS coordinates, annotated with labels such as 

object classifications, lane markings, traffic signs and 

vehicle trajectories. Datasets serve as training inputs for 

Machine learning algorithms, allowing SDV systems to learn 

to recognize and interpret different objects, obstacles, and 

environmental cues. High-quality and diverse datasets are 

essential for training robust and reliable self driving models 

capable of handling a wide range of driving conditions and 

scenarios. Even though creating and putting up own datasets 

for SDVs takes time, there are many common and significant 

datasets already available that may be used for study, in this 

section we detailed discussed about various open-source 

dataset for SDVs. 

A2D2 [149] With almost 41,000 labelled cases and 38 

characteristics, the Audi Autonomous Driving Dataset 

(A2D2) has a total size of roughly 2.3 TB. Sorted according 

to the type of annotation, it includes 3D bounding boxes and 

semantic segmentation. 

ApolloScape [150] is a dynamic project that aims to 

advance multiple areas of SDV. It provides 1000km 

trajectories for urban traffic, 80,000 lidar point clouds, and 

over 100,000 street view frames. 

Another notable dataset for 3D object tracking and 

motion predictions is Argoverse 1 [151]. It provides 

extensive sensor data, such as LiDAR point clouds, forward-

facing stereoscopic pictures, and 360-degree pictures from 

seven cameras. Thanks to its diversified sensor data and 

semantic maps, Argoverse, which covers over 300,000 

vehicle trajectories collected from 290 km of mapped lanes, 

offers rich knowledge necessary for furthering research and 

development in prediction systems. 

Berkeley DeepDrive [152] This dataset, also referred to 

as BDD 100K, offers 100,000 annotated films and ten tasks 

for assessing image recognition software. It includes 

information on geographic and meteorological diversity, 

over 100 million frames, and more than 1000 hours of 

driving experience. 

Cityscapes [153] provides a large dataset that has been 

collected in complicated urban environments. It carefully 

annotates pictures offering pixel-by-pixel segmentation for 

thirty distinct classes, such as cars, people, streets, and traffic 

signals. Cityscapes is a well-known example of a difficult 
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baseline for urbanised semantic segmentation tasks. The 

Comma.ai Driving Dataset [154] captures real-world driving 

scenarios from a Tesla Model S using  
 

 

TABLE 9 SUMMARY OF DIFFERENT DATASET RELATED TO SDVS 

 

Dataset Year Sensors Environment Size File Formats Primary Tasks 

A2D2 [146] 2020 Cameras, 
LiDAR, GPU, 

IMU 

Diverse (urban, 
rural) 

1.3 million images Images, LiDAR point 
clouds, GPS data, IMU data 

annotations 

Object detection, tracking, 
semantic segmentation 

ApolloScape [147] 2019 Cameras, 
LiDAR, GPS, 

IMU 

Urban 146k images, 1000 
km trajectories 

Images, LiDAR point 
clouds, GPS data, IMU data 

annotations 

Object detection, tracking, lane 
detection, semantic segmentation, 

path planning 

Argoverse 1 [148] 2019 Cameras, LiDAR Urban 
(Pittsburgh, 

Miami) 

300k Trajectories Images, LiDAR point 
clouds, camera calibration, 

annotations 

Object detection, tracking, motion 
forecasting 

BDD100K [149] 2020 Cameras, GPS, 
IMU 

Urban 100,000 images of 
12M of data 

Images, GPS data, IMU data 
and annotations 

Object detection, traffic light 
detection, driving behaviour 

analysis 

Cityscapes [150] 2016 Cameras Urban (50 

German cities) 

5,000 fine 

annotations, 

20,000 coarse 

annotations 

Images, annotations Semantic segmentation, scene 

understanding 

Comma.ai [151] 2016 Cameras, 

LiDAR, GPS, 

IMU 

Various 112,000 frames Videos, LiDAR point 

clouds, GPS data, IMU data 

(limited access) 

Object detection, lane detection, 

behaviour cloning (limited access) 

KITTI [152] 2013 Cameras, LiDAR Urban 41k frames Images, LiDAR point 

clouds, calibration data, 
annotations 

Object detection, tracking, stereo 

vision 

Lyft Level 5 [153] 2021 Cameras, 

LiDAR, radar, 
IMU, GPS 

Urban 1.1K hours of data 

(limited access for 
research) 

Images, LiDAR point 

clouds, radar data, IMU 
data, GPS data, annotations 

Object detection, tracking, lane 

detection, behaviour prediction 
(limited access) 

NuScenes [154] 2019 Cameras, 

LiDAR, radar,  

Urban 1,000 drives 40k 

of data 

Images, LiDAR point 

clouds, radar data, 
annotations 

Object detection, tracking, , motion 

forecasting, scene understanding 

Waymo Open 

Dataset [155] 

2019 Cameras, 

LiDAR, radar 

Urban 1,500 hours, 230k 

of data 

Videos, LiDAR point 

clouds, annotations (limited 

access) 

Object detection, tracking, , motion 

forecasting (limited access) 

highD [156] 2018 Cameras, LiDAR Urban 45K km distance 

(limited access for 
research) 

Images, LiDAR point 

clouds, annotations 

Object detection, tracking, lane 

detection, behaviour prediction 
(limited access) 

INTERACTION 

[157] 

2021 Cameras, LiDAR Highway 48 hours of data 

110k Trajectories 

Videos, LiDAR point 

clouds, annotations 

Object detection, tracking, lane 

detection, behaviour analysis on 
highways 

Argoverse 2 [158] 2023 Cameras, LiDAR Urban (Miami) 6 million frames Images, LiDAR point 

clouds, camera calibration, 
annotations 

2D and 3D Object detection, 

tracking 

Talk2BEV [159] 2023 QA pairs Urban 20,000 diverse 

question categories 

large vision-language 

models with BEV maps 

understanding of maneuver 

scenarios 

IDD-3D [160] 2023 Cameras, LiDAR Urban (India) 12,000 LIDAR 

frames 

LiDAR point clouds, 

annotations 

3D object detection and tracking 

tasks with different traffic 

condition  

cameras, LiDAR, GPS, and IMU sensors. This diverse data 

(112,000 video frames) is valuable for training SDV 

algorithms in tasks like object detection and lane following. 

While full access might be limited, it offers a glimpse into 

real-world driving data for researchers in this field. 

Benchmarking the KITTI Vision Suite [155] The 2012 

release of the KITTI dataset, which includes real-world 

computer vision benchmarks, made it a pioneer in the field 

of SDV research. It has received more than 4000 scholarly 

citations. 

Lyft Level 5 [156] provides more than 1,000 hours of 

data, making it a noteworthy dataset for motion prediction in 

SDVs. In addition to 17,000 sceneries, it has an 8,500-lane 

segment high-resolution aerial image and a high-definition 

semantic mapping with over 15,000 human annotations. It is 

an essential standard for SDVs, assisting activities like 

mobility planning and forecasting with its rich annotations 

and broadened data. 

A vital tool for SDVs, nuScenes [157] provides a variety 

of datasets suited to the requirements of perception systems. 
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Using LiDAR, radars, and cameras, it gathers data from 

metropolitan areas in Boston and Singapore. Six cameras 

provide detailed environmental views. This dataset is 

extensively used for multi-view object identification tasks 

and, by enabling a wide range of activities and establishing 

new industry standards.  

The Waymo Open Dataset [158] introduced in 2019, 

significantly contributes to the advancement of 
 
TABLE 10. SUMMARY OF VARIOUS SUMULATION AND DEPLOYMENT FRAMEWORKS 

Features\ 

Platform Focus 

Open 

Source 

Sensor 

Simulation Weather 

Traffic 

Simulation 

Scenario 

Design Visualization Strengths Weaknesses 

CARLA 

[168]  

Urban 

environments 

Yes LiDAR, 

Camera, 
Radar, 

GPS, IMU 

Rain, 

Snow, 
Fog 

Vehicles, 

Pedestrians, 
Cyclists 

Python 

API 

3D viewer, 

Sensor views 

Open-source, 

realistic 
graphics, 

diverse 

sensors 

Limited 

weather & 
traffic 

control 

LGSVL 

[165] 

Urban 

environments 

No LiDAR, 

Camera, 

Radar 

Rain, 

Snow, 

Fog 

Vehicles, 

Pedestrians, 

Cyclists 

Python 

API 

3D viewer, 

Sensor views 

High fidelity, 

real-time 

simulation 

Commercial 

license 

Baidu 

Apollo 

[167] 

Urban & 

Highway 

Partially LiDAR, 

Camera, 

Radar 

Rain, 

Snow, 

Fog 

Vehicles, 

Pedestrians, 

Cyclists 

Scenario 

editor, 

Python 

API 

3D viewer, 

Sensor views 

Open-source 

integrates 

with Baidu 

hardware 

Less open-

source, 

limited to 

Baidu tools 

Mcity  Urban & 

Highway 

No LiDAR, 

Camera, 
Radar 

Limited High-fidelity 

traffic 

Scenario 

editor 

3D viewer High-fidelity 

traffic 
simulation 

Relies on 

University 
access 

AirSim  
[171] 

Varied (incl. 
urban) 

Yes LiDAR, 
Camera, 

Depth 

Rain, 
Snow, 

Fog 

Vehicles, 
Pedestrians 

Python 
API 

3D viewer, 
First-person 

view 

Integrates 
with 

Microsoft 

Azure 

Primarily for 
research 

rFpro[170] 

[37]  

Racing 

simulator 

(adaptable) 

No Limited 

sensor 

options 

Limited 

weather 

options 

Limited traffic 

options 

Scripting 

languages 

3D viewer Realistic 

racing 

physics 

Limited to 

racing 

scenarios 

Autoware 
[166] 

Open-source, 
ROS-based 

Yes LiDAR, 
Camera, 

Radar (ROS 

integration) 

Rain, 
Snow, 

Fog (ROS 

integratio
n) 

Vehicles, 
Pedestrians, 

Cyclists (ROS 

integration) 

ROS 
tools, 

Python 

RViz (ROS 
visualization 

tool) 

Open-source, 
ROS-based, 

active 

community 

require some 
ROS 

expertise 

SUMO 

[164] 

Traffic 

simulation 
(macroscopic) 

Yes None 

(traffic 
simulation) 

Limited High-fidelity 

traffic 
(macroscopic) 

Scripting 

languages 

2D viewer 

(macroscopic) 

Large-scale 

traffic 
modeling & 

simulation 

Not suitable 

for sensor-
based 

control 

TORCS 
[169] 

Racing 
simulator 

(microscopic) 

Yes None Limited No traffic 
simulation 

Track 
files, 

scripting 

3D viewer 
(microscopic) 

Real-time 
racing 

environment 

Not suitable 
for sensor-

based 

control 

 

SDV research. It has a major impact on the field by providing 

a substantial amount of multimodal sensory information with 

thorough annotations. Especially, the dataset's extensive 

coverage of a wide range of driving situations and 

geographical areas improves the practicality and resilience 

of several tasks like as tracking, segmentation, and detection. 

The highD dataset [159] provides a comprehensive 

collection of realistic vehicle trajectories on German roads. 

Among them are 110,000 vehicles and trucks' refined 

trajectories. This dataset tackles the limitations of existing 

scenario-based safety validation measurement approaches, 

which frequently lack enough high-quality data and realistic 

road behaviour among users. 

The INTERACTION dataset [160] comprises an 

extensive semantic map and covers a broad spectrum of 

complex navigation scenarios. For diverse tasks like 

mobility forecasting, imitation learning, and judgement 

validation, this feature makes it versatile. The integration of 

data from several nations improves the analysis of driving 

behaviours across cultural differences, which is important 

for the advancement of SDVs worldwide. 

Argoverse 2 [161], an expansion of Argoverse 1 [148], 

offers the largest dataset for SDVs. It features complex 

driving scenarios and vital functions like 3D object tracking. 

Covering six cities and various situations, this dataset 

provides multimodal data supporting algorithmic 

advancements in SDV development. 

Talk2BEV [162] is a pioneering dataset that combines 

vision-language models with BEV maps for SDV 

applications. With over 20,000 human-annotated inquiry 

types, it enhances understanding of maneuver scenarios 

using state-of-the-art techniques. The Talk2BEV-Bench 

standard supports activities such as intent prediction and 

decision-making, offering a versatile framework for research 

and progress. 

The IDD-3D [163] dataset includes 12k labelled driving 

LiDAR frames from several traffic circumstances, as well as 

multimodal data from several cameras and LiDAR sensors. 

It makes a substantial addition to the creation of SDV for 
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India. Its focus on capturing the complexities of Indian roads 

provides valuable data for researchers and developers 

working on this technology. 

Summary of different dataset utilized for the 

development of SDV presented in Table 9. At the moment, 

datasets play a critical part in the process of exercise and 

validating techniques for SDVs, thereby creating the 

important groundwork that is required for the application of 

these methods and the evolution of technology with regard 

to SDVs. 

 

B. SIMULATION AND DEPLOYMENT FRAMEWORKS 

A Simulation and Deployment Framework for SDVs motion 

planning provides a comprehensive platform for developing, 

testing, and deploying motion planning algorithms in both 

simulated and real-world scenarios. It enables researchers 

and developers to create and validate motion planning 

algorithms in simulated environments before deploying them 

onto actual SDVs, thereby accelerating the development 

process and ensuring robust performance in real-world 

conditions. In this section we are discussed about different 

simulator and their features related to motion planning for 

SDVs 

As a result of the development of open-source SDV 

simulation platforms, algorithm testing in this field has 

become much easier. For example, the German Aerospace 

Centre is responsible for developing the SUMO [164] 

platform, which is a platform for simulating traffic at a tiny 

scale. In addition to providing comprehensive evaluation 

capability for huge-scale mobility methods, SUMO also 

includes an intuitive user interface that is compatible with a 

variety of data forms. There is widespread recognition for the 

extensive features that SUMO possesses, and it has become 

an essential component in simulation initiatives. In addition, 

LGSVL Simulator [165] is an open-source gem for SDV 

developers. This high-fidelity simulator creates realistic 

environments to test SDV algorithms. It integrates with 

popular frameworks like Autoware [166] and Apollo [167], 

saving you time on code setup. LGSVL doesn't stop there - 

you can customize sensors, design new objects, and even 

build digital replicas of real-world roads. With its focus on 

realism and ease of use, LGSVL Simulator integrated with 

[166] or [167] is a high powerful tool for working on the 

future of SDV development in real-world environment. 

Additionally, CARLA [168] is a crucial tool for ego-

vehicle Self Driving. It's an open-source simulator focused 

on urban scenarios, facilitating development, training, and 

validation of core SDV components. With its realistic virtual 

environment, developers can test algorithms under various 

conditions. Its open-source nature fosters collaboration and 

innovation, accelerating progress in SDV technologies. 

Further, TORCS [169] and rFpro [170] are leading 

simulators for multi-vehicle interaction studies. With 50+ 

vehicle models and 20+ tracks, they offer rich environments 

for research. Their ability to simulate races with up to 50 

vehicles simultaneously provides invaluable insights into 

scalability and behaviour. Specially [169] Open-source 

nature fosters collaboration and customization, advancing 

research in SDVs.  

Furthermore, AirSim [171] is a high-fidelity simulator 

developed by Microsoft for aerial and ground vehicles. It 

offers realistic environments, sensor simulation, physics-

based dynamics, and open-source customization. AirSim 

[171][164] enables developers to test and validate SDVs, 

accelerating research in robotics and artificial intelligence. 

The summary of various simulation and deployment 

framework for SDV shown in table 10. 

V. PERFORMANCE EVALUATION ANALYSIS OF DL- 

BASED MOTION PLANNING AND E2EL TECHNIQUE 

FOR SDVs 

This section compares the effectiveness of several DL 

techniques for tasks that are related to the motion planning 

of SDVs. This section is separated into four parts that deal 

with various DL-based behaviour planning, DL-based  

trajectory planning, DL-based E2EL and types of 

implementation strategies. Performance assessments in 

behaviour planning are evaluated based on commonly 

employed measures such as prediction accuracy, Recall, 

Precision and F1- Score. Performance assessments in 

trajectory planning are compared using commonly employed 

metrics, such as the Average Distance Error (ADE), Final 

Distance Error (FDE), Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) concerning the common 

horizon forecast time. Additionally, performance 

assessments in the DL-based E2EL are compared using 

commonly employed metrics Success Rate (SR) and RMSE. 

Further compared and analysed different types of 

implementation techniques. In this section, we utilized many 

equations which are adopted from [20] [34] [43] [53]. 

A. PEFORMANCE EVALUATION ANALYSIS OF 

BEHAVIOUR PLANNING METHODS 

A key step in assessing the success of machine learning 

models is to evaluate their performance according to 

behaviour prediction accuracy, Precision, Recall and F1-

Score. These metrics are employed to assess how well a 

model predicts a system's behaviour. Firstly, a model's 

ability to accurately anticipate a system's behaviour is 

measured by its behaviour prediction accuracy. It is defined 

as the proportion of accurately predicted outcomes to all 

forecasts. The formula for behaviour prediction accuracy is 

referred in (1). 

Accuracy =
TP + TN

TP + TN + FP + FN
 (1) 

Where TP stands for "True Positive" (the number of 

correctly predicted positive outcomes), TN for "True 

Negative"(the number of correctly predicted negative 

outcomes), FP for "False Positive"(the number of incorrectly 

predicted positive outcomes) and FN for "False Negative" 

(the number of incorrectly predicted negative outcomes). For 
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instance, overall prediction accuracy is used to evaluate most 

behavior prediction strategies. Different proposed models to 

predict various behaviour of SDVs discussed in Section II.A. 

Based on the various aforementioned model results we 

compared various DL-based Techniques for behaviour 

prediction and their corresponding performance accuracy is 

shown in Figure 13.  
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FIGURE 12. Comparison of various behaviour planning algorithm's 
accuracy 

The various discussed model accuracies are in the range 

of 80 % to 100 %. We considered the range of accuracy from 

95% to 100%, 85% to 95% and 80% to 85% as excellent, 

moderate and least performance respectively. Excellently 

performed algorithms for a SDV in behavior prediction are 

AT_Mbi_LSTM [26], LSTM_CRF [31], LSTM [28] and 

LSTM_GRU [29] achieved higher accuracy of 98.01%, 

98%, 97.22% and 96% respectively. Further AT_BiLSTM 

[33], FIS_LSTM [24], DBRNN [32], SNN [23] and DRNN 

[35] models achieved a moderate behaviour prediction 

accuracy of 93.33%, 92.4%, 88%, 87.89% and 87% 

respectively. Then, the least performing algorithms for a 

SDV for behaviour prediction are AT_GRU [34] and 

Multi_LSTM [27] achieved lower accuracy of 84.5% and 

83.75% respectively. Hence, we observed the top most and 

least most performance accuracy among the early discussed 

algorithms for behaviour prediction of SDVs are achieved by 

AT_Mbi_LSTM [26] and Multi_LSTM [27] respectively. 

Overall, the selection of a DL algorithm for SDV behaviour 

prediction should be based on its accuracy and suitability for 

handling the specific driving scenarios encountered. 

To provide a more accurate assessment of a model's 

performance, the F1-Score statistic combines precision and 

recall. It refers to the harmonic average of recall and 

precision. Refer (2) to calculate F1- Score. 

 F1 − Score = 2 X 
Precision X Recall

Precision + Recall
 (2) 

F1- Scores of various discussed models are in the range of 

80% to 100%. The different discussed models such as 

LSTM_CRF [31], AT_Mbi_LSTM [26], LSTM_GRU [29], 

AT_BiLSTM [33], Bi_LSTM [30] and AT_GRU [34] has 

Achieved F1- scores are 98.9%, 96.18%, 96%, 93%, 91.76% 

and 84.33% respectively. Hence, we observed top most and 

least most F1- scores among the early discussed algorithms 

for behaviour prediction of SDVs are achieved by 

LSTM_CRF [31] and AT_GRU [34] respectively. Hence, 

this comparison provides valuable insights into the 

performance of these algorithms and helps optimize the 

performance of SDVs for safety and reliability. 

Next, the percentage of genuine positives among all 

correctly predicted positive outcomes is known as precision. 

In other words, it is the proportion of genuine positives to the 

total of both true and false positives. Equation 3 represents 

the precision formula. 

 Precision =
TP

TP + FP
 (3) 

The different discussed models such as LSTM_CRF [31] 

[32], LSTM_GRU [29][30], AT_Mbi_LSTM [26][27], 

AT_BiLSTM [33][34], Bi_LSTM [30][31] and AT_GRU 

[34][35] achieved precision are 99.5%, 96%, 94.47%, 

94.17%, 86.67% and 85.07% respectively. We observed top 

most and least most precision among the early discussed 

algorithms for behaviour prediction of SDVs are achieved by 

LSTM_CRF [31] [32] and AT_GRU [34][35] respectively. 
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FIGURE 13. Comparison of various Behaviour planning algorithms F1- 
Score, Precision and Recall   
 

Finally, the percentage of true positives that are actual 

genuine positives is known as recall. In other words, it is the 

proportion of genuine positives to the total of true positives 

and false negatives. Refer (4) to calculate the recall. 

 Recall =
TP

TP + FN
   (4) 

The different discussed models such as LSTM_CRF [31], 

AT_Mbi_LSTM [26], Bi_LSTM [30], LSTM_GRU [29], 

AT_BiLSTM [33] and AT_GRU [34] has achieved recall 

percentages are 99.5%, 96%, 94.47%, 94.17%, 86.67% and 

85.07% respectively. we observed top most and least most 

recall among the early discussed algorithms for behaviour 

prediction of SDVs are achieved by LSTM_CRF [31] and 
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AT_GRU [34] respectively. These metrics provide a 

comprehensive evaluation of a model's performance in 

predicting the behaviour of a system. A comparison of 

various behaviour planning algorithms metrics Precision, 

Recall and F1- Score is shown in Figure 14. 

B. PERFORMANCE EVALUATION ANALYSIS OF 

TRAJECTORY PLANNING METHODS 

Measuring the efficiency of DL approaches for forecasting 

the trajectory of SDV requires performance evaluation 

criteria. These measures evaluate how well the model 

forecasts the vehicle's position in the future based on its 

previous positions and movements. This section compares 

and analyses the four most often used performance 

evaluation metrics: MAE, FDE, ADE and RMSE. These 

metrics are represented in the unit of meter. Lower values for 

these metrics indicate better performance, and the criteria for 

each application will determine the appropriate metric. 

To calculate the average deviation for each time step in the 

projected trajectory, the ADE compares the expected 

positions to the actual positions. The expression for ADE is 

referred in (5) 

ADE =
1

N
∑ ||N

i=0 Pi −  Pi∗|| (5) 

where N stands for the anticipated trajectory's number of 

time steps, Pi represents the vehicle's predicted position at 

time step i, and Pi* denotes the equivalent ground truth 

position.  

Previously discussed DL algorithms for trajectory 

planning metrics ADE and FDE are compared in Figure 15. 

We considered prediction horizon 3s and 5s as a common 

factor to compare ADE and FDE among different DL-based 

trajectory planning for SDVs respectively. Previously 

discussed algorithms SafePathNet [37], P-LSTM-M-map 

[42], improved LaneGCN [45], Improved CNN [39] and U 

net (6 layers) [43] have achieved ADE values are 0.22, 0.51, 

0.51, 0.565 and 0.6 in meter respectively.  

The FDE calculates the separation between the vehicle's 

anticipated final location and its actual final position using 

ground truth data. The formula for FDE is referred in (6) 

FDE = ||PN − PN∗|| (6) 

where PN* denotes the relevant ground truth final position 

and PN represents the vehicle's anticipated ultimate position. 

Previously discussed algorithms SafePathNet  [37], U net (6 

layers) [43], improved LaneGCN [45], P-LSTM-M-map 

[42] and Improved CNN [39] have achieved FDE values are 

0.31, 0.795, 0.804, 0.996 and 1.03 in meter respectively. We 

observed that SafePathNet [37] ADE and FDE values are 

very less and better performance when compared with other 

models. 

The average absolute difference between the anticipated 

positions and the ground truth positions for each time step in 

the expected trajectory is measured by the MAE. The 

formula for MAE is referred to in (7). 

 

 
FIGURE 14. Comparison of Various Trajectory Planning Algorithms ADE 

and FDE values 
 

MAE =
1

N
∑ ||N

i=0 Yi − Yi∗|| (7) 

Where Yi is the anticipated position of the vehicle at time 

step i, Yi* is the equivalent ground truth position, and N is 

the number of time steps in the predicted trajectory. 

Previously discussed models CNN_Raw-RNN [38], Four 

layer LSTM [40] and U net (6 layer) [43] have achieved 

MAE values are 0.113, 0.29 and 0.38 in meters respectively. 

We observed that CNN_Raw-RNN [38] has a less MAE 

value when compared with other models which indicate that 

it better performed. Comparison of various trajectory 

planning algorithms MAE values are shown in Figure 16. 

 

 

FIGURE 15. Comparison of Various Trajectory Planning Algorithms 
MAE values 
 

For each time step in the expected trajectory, the RMSE 

calculates the difference between the predicted positions and 

the actual positions. The formula for RMSE is expressed in 

Equation 8 

RMSE = √
1

N
∑ (

N

i=0
Pi −  Pi∗)^2 (8) 
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Some of the previously discussed models U net (6 layer) 

[43], AT_CNN_LSTM [41], NeuroTrajectory [50] and 

PF_CNN_LSTM [44] have achieved RMSE values are 1.23, 

1.91, 2.09, and 4.26 in meter respectively. We observed that 

U net (6 layer) [43] has a less RMSE value when compared 

with other models. Comparison of various trajectory 

planning algorithms RMSE values are shown in Figure 17. 
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FIGURE 16. Comparison of Various Trajectory Planning Algorithms 

RMSE values 

 

Hence, the effectiveness of DL models for trajectory 

prediction of SDV is thoroughly compared and analyzed 

using ADE, FDE, MAE, and RMSE. These measurements 

support evaluating how well the model forecasts the vehicle's 

future assignments and how well it works in various traffic 

situations, such as in congested areas or inclement weather. 

Lower values for these metrics indicate better performance 

and the particular requirements of the application will 

determine which metric is best. 

D. PERFORMANCE EVALUATION ANALYSIS OF END-
TO-END LEARNING METHODS 

Metrics for performance evaluation are necessary to assess 

the efficacy of E2EL approaches for SDV. These measures 

evaluate how well the model predicts several aspects of 

driving, including steering angle, acceleration, and braking. 

In this context, this section compares and analyses Success 

Rate (SR) and RMSE, two widely used performance 

measurement metrics. The success Rate (SR)of an E2EL 

model for SDV is by evaluating its performance on a set of 

predefined tasks, including lane detection, object detection, 

and path planning. The success rate can be computed as the 

percentage of tasks completed correctly by the model. 

Various discussed model Success Rate (SR) of E2EL for 

SDVs are Compared in Figure 18. It clearly shows that 

Modified Pointnet++ [69], MSF_SU [68], IVMP [67], 

Intention net [80] and Conditional Imitation Learning (CIL) 

[81] scored success rate is 93.6%, 91%, 88.67%, 75.28% and 

60.72% respectively. We observed that Modified Pointnet++ 

[69] has achieved a high SR and CIL [81] achieved the least 

SR.  
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FIGURE 17. Comparison of different E2EL Success Rate 
 

In machine learning, the RMSE is a popular evaluation 

statistic for regression problems. RMSE can be used in the 

context of SDVs to assess how well the model predicts 

steering angles or other continuous variables. E2EL for SDV 

entails teaching a DNN to directly output a control signal, 

such as the steering angle, throttle, and brake, after receiving 

input from sensors like cameras and lidar. 
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FIGURE 18. Comparison of E2EL technique RMSE value 

By contrasting its outputs with the ground truth data, 

RMSE can be used to assess the network's predictions' 

accuracy. This statistic calculates how closely the actual 

values match the projected values, with a lower RMSE 

indicating better accuracy. By minimizing the RMSE loss 

during training, the network can be optimized to make more 

accurate predictions, which is essential for safe and reliable 

SDV. 
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FIGURE 19. Type of Implementation 

 
Some of the previously discussed models of E2EL for 

SDV Two CNN [65], MSINet t+4 [60], Time to Line Cross 

(TLC) model [62], Deep Steering [82], HCA [83] and Cg23 

[84] has achieved RMSE values are 0.038, 0.0491, 0.06849, 

0.07153, 0.11145 and 0.24679 in radian respectively. We 

observed that Two CNN [65] has a less RMSE value when 

compared with other models. A comparison of various E2EL 

algorithm's RMSE values is shown in Figure 19. 

 

VI. IMPLEMENTATION ANALYSIS OF DL- BASED 

MOTION PLANNING AND E2EL TECHNIQUE FOR 

SDVs 

 

The advent of SDVs represents a transformative shift in 

transportation, promising safer, more efficient, and 

convenient mobility solutions. However, realizing the full 

potential of self driving requires effective implementation of 

sophisticated motion planning algorithms. Implementation 

analysis in this context involves assessing the practical 

deployment of these algorithms to ensure safe and efficient 

navigation in real-world environments. The outcomes of 

implementation analysis in this domain provide critical 

insights for refining motion planning algorithms, optimizing 

system performance, and enhancing the safety and reliability 

of SDVs. By systematically evaluating the practical 

deployment of motion planning algorithms, stakeholders can 

address challenges, identify opportunities for improvement, 

and accelerate the adoption of SDV technology. 

Hence, we compared the way of implementation 

percentage between different categories of implementation. 

We grouped implementations based on their type. Groping 

of different reviewed papers depends on the above-

mentioned category shown in Figure 20.  In behaviour 

planning there are three types of implementations are 

identified, they are Hardware in Loop Simulation (HIL 

Simulation), Simulation with Numerical data Analysis 

(Simulation + NA) and Simulation with Real World 

Implementation (Simulation + RWI). In trajectory planning 

there are three types of implementations are identified, they 

are Simulation with Numerical data Analysis (Simulation + 

NA), Simulation with Numerical data Analysis with Real 

Time Implementation (Simulation + NA + RTI) and 

Simulation with Numerical data Analysis with Real-world 

Implementation (Simulation + NA + RWI). In E2EL there 

are three types of implementations are identified, they are 

Simulation, Simulation with Numerical data Analysis 

(Simulation + NA) and Simulation with Real World 

Implementation (Simulation + RWI).  

 
A. COMPARISON ANALYSIS OF DIFFERENT TYPES 

OF IMPLEMENTATIONS 

 

In this section, we are comparing the several types of 

implementations for behaviour planning, trajectory planning, 

end to end planning and overall comparison between 

simulation and real-world implementation shown in Figure 

4.8. From this survey, in behaviour planning three types of 

implementation groups were categorised, they are 

Simulation+NA, HIL Simulation and Simulation+RWI 

calculated percentages are 46.16, 38.46 and 15.38 

respectively as shown in Figure 21(a). Besides this in 

trajectory planning another three types of implementation 

groups are categorised, they are Simulation+NA, 
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FIGURE 20. Comparison of different types of implementation percentages among the survey papers. (a)Implementation percentage for behaviour 
Planning. (b)Implementation percentage for trajectory planning. (c) Implementation percentage for E2EL. (d) Overall percentage between 
simulation and Real-world Implementation. Simulation (Sim), Numerical Analysis (NA), Real-Time Implementation (RTI), Real World 
Implementation (RWI) 

 

Simulation+NA+RTI and Simulation+NA+RWI calculated 

percentages are 40, 26.66 and 33.34 respectively as shown in 

Figure 21(b). Besides this in E2EL, another three types of 

implementation groups are categorised, they are Simulation, 

Simulation+NA and Simulation+RWI calculated 

percentages are 38.89, 33.34 and 27.77 respectively as 

shown in Figure 21(c). Hence, the overall implementation 

percentage shown in Figure 21(d) which is compared 

between simulation and real-world implementation has 

calculated percentages are 71.74 and 28.26 respectively. We 

observed that most of the researcher implemented their work 

by software simulation and a smaller number of researchers 

implemented their work in the real world. The main reason 

behind this implementation in the real world needs more 

funds and a hardware approach which is a big challenge for 

the researcher.  

Further, there are some other reasons why the 

implementation of various research is high in simulation but 

low in real-world implementation: 

• Cost: It can be costly to conduct research in real-

world settings, particularly when it involves massive 

experiments or intensive data collection. Simulations 

are often less costly because they can be running on 

computers and require fewer resources. 

• Safety: Simulations can be used to evaluate 

hypotheses and conduct experiments without putting 

people or the environment at risk. This is crucial in 

the field of self driving since mistakes might have 

severe consequences. 

• Control: In simulations, researchers have a high 

degree of control over variables and conditions, 

which is often not possible in real-world settings. This 
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allows for more precise and targeted experiments, 

leading to more reliable results. 

• Time: Conducting research in real-world 

environments can be time-consuming, especially 

when data collection requires long-term observation 

or follow-up. Simulations can be run faster, allowing 

researchers to evaluate and refine their hypotheses 

more quickly. 

• Accessibility: Simulations can be accessed by 

researchers and scientists all over the world, making 

collaboration and sharing of results easier. This can 

lead to more diverse and robust research findings. 

However, it is essential to remember that simulations don't 

always accurately reflect actual circumstances, and results 

obtained in simulations may not necessarily translate to the 

real world. Therefore, it is essential to validate simulation 

results with real-world experiments whenever possible.  

Hence, the proficiency and effectiveness of the 

aforementioned motion planning and E2EL strategies 

indicate numerous difficulties. Although these approaches 

are relatively expensive to compute, they demonstrate 

promising outcomes for their intended task. Additionally, 

because they ignore crucial factors like energy consumption 

or forecast delay, mainstream approaches are only practical 

with cloud servers and high-end GPUs, which is an 

unrealistic situation for real application contexts. Further, we 

discuss several unresolved problems and their corresponding 

recommendations in the following section. 

VII. CHALLENGES AND FUTURE RECOMMENDATIONS  

SDVs have advanced significantly, with validation on 

partially open roads in several cities. But there are challenges 

to full commercial implementation. Challenges include 

ensuring safety in diverse environments, navigating 

regulatory frameworks, building public trust, and upgrading 

infrastructure.  

 
A. CHALLENGES 

Here are some of the important challenges in SDV 

development: 
1) HANDLING THE LONG TAIL OF RARE EVENTS 
SDVs have shown remarkable proficiency in handling 

routine driving scenarios and well-maintained roads. 

However, the real world presents a myriad of unpredictable 

challenges. From sudden downpours to blowing debris, and 

even animals darting into traffic, rare and unexpected events 

continue to pose significant hurdles. While advancements in 

object recognition have enhanced the capabilities of SDVs 

AI, these uncommon occurrences can still befuddle the 

system. Additionally, navigating edge cases and ambiguous 

situations remains a formidable task. Traffic laws open to 

interpretation and human drivers relying on intuition to 

handle scenarios like unclear hand signals or merging lanes 

add layers of complexity. Teaching SDVs to emulate human 

judgment in such ambiguous circumstances remains an 

ongoing endeavour, underscoring the necessity for continued 

refinement and adaptation in SDV technology. 

 
2) DEPENDENCE ON HIGH-DEFINITION (HD) MAPS 

AND INFRASTRUCTURE 

Driving SDVs rely on detailed, constantly updated HD maps 

to navigate.  However, creating and maintaining these maps 

for every road everywhere is a massive undertaking. 

Additionally, poorly marked lanes, construction zones, or 

missing signage can disrupt a SDV that relies too heavily on 

pre-programmed information. 
 
3) SENSOR LIMITATIONS AND ADVERSE WEATHER 

SDVs uses a complex suite of sensors to perceive their 

surroundings.  However, these sensors can be fooled by 

things like fog, heavy rain, or even bright sunlight.  Recent 

challenges include improving sensor performance in adverse 

weather conditions and ensuring they can’t be easily 

confused by external factors. 
 

4) CYBERSECURITY THREATS 

SDVs are essentially computers on wheels, and like any 

computer system, they are vulnerable to hacking.  A 

malicious actor could potentially take control of a SDV, 

causing accidents or privacy breaches.  Ensuring robust 

cybersecurity measures are in place is crucial. 
 
5) ETHICAL CONSIDERATIONS AND MORAL 

DILEMMAS 

SDVs may someday face situations where an accident is 

unescapable.  How the SDV is programmed to react in these 

“split-second” scenarios raises complex ethical questions.  

Engineers are grappling with how to program these vehicles 

to make the safest decisions possible, while considering 

factors like pedestrian safety and minimizing harm. 
 

6) DATASET 

High-quality datasets must be readily available in order 

to train and evaluate SDV algorithms. Although simulators 

are essential to this procedure, models that are exclusively 

trained in virtual environments frequently encounter 

difficulties when applied to real-world situations [172]. 

Thus, to effectively develop research in this subject, bridging 

the gap between simulated and realistic data is crucial. 

 
B. FUTURE RECOMMENDATIONS 

Motion planning, the art of navigating a SDVS safely and 

efficiently, is on the cusp of significant advancements. Here's 

some of the future recommendation in the field of motion 

planning for SDVs.  

 
1) INTERPRETABILITY: DEMYSTIFYING THE BLACK 

BOX 
Currently, many AI models used for motion planning 

function as "black boxes." Their decision-making processes 

are opaque, making it difficult to understand why a car took 

a particular route or performed a specific maneuver. This 
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lack of transparency is a major hurdle for gaining public trust 

and regulatory approval. The future of motion planning lies 

in interpretable planning. This means developing 

algorithms that can explain their reasoning in a way humans 

can understand. Imagine a system that could highlight factors 

like traffic flow, pedestrian presence, and signal 

interpretations when making a decision. This transparency 

will be crucial for building trust with regulators and the 

public, paving the way for wider adoption of SDV 

technology. 

 
2) SIM2REAL TRANSFER: BRIDGING THE SIMULATION 

GAP 

A major challenge in developing SDV is the disparity 

between the controlled environment of simulations and the 

unpredictable nature of the real world [173],[174]. This gap 

can lead to situations where the SDV struggles to adapt its 

motion planning strategies when encountering unexpected 

obstacles or variations in road conditions. The future will see 

advancements in Sim2Real transfer. This involves 

developing algorithms that can effectively translate learnings 

from meticulously crafted simulations to the real world. 

Imagine a virtual environment that can realistically simulate 

not only ideal conditions but also diverse weather patterns, 

construction zones, and even erratic driver behavior. By 

training and validating motion planning algorithms in these 

nuanced simulations, developers can ensure a smoother and 

safer transition to real-world deployment. 

 
3) DIGITAL TWIN INTEGRATION: A VIRTUAL 

PLAYGROUND FOR TESTING 

virtual replicas of SDV and their environments will continue 

to play a vital role in refining motion planning algorithms. 

These virtual cities can be populated with millions of 

meticulously crafted scenarios, allowing researcher to test 

and refine the SDVs decision-making under a vast array of 

conditions. Imagine a digital twin simulating a busy 

intersection during rush hour with malfunctioning traffic 

lights and a jaywalking pedestrian. By testing motion 

planning algorithms in these complex situations, researcher 

can identify potential weaknesses and refine the SDVs 

ability to handle the unexpected, leading to a significant 

improvement in overall safety and performance. 
 
4) RELIABILITY: BUILDING CONFIDENCE ON THE 

ENVIRONMENT 

For SDVs to become a reliable mode of transportation, they 

need to demonstrate exceptional reliability.  Current motion 

planning algorithms can sometimes struggle with 

unexpected situations like sudden sensor failures or 

previously unseen traffic patterns. The future will focus on 

developing highly reliable motion planning algorithms. 

This involves incorporating strategies for graceful 

degradation and fail-safe mechanisms. Imagine a SDV that 

can not only navigate flawlessly under normal conditions but 

also has backup plans or alternative routes in case of sensor 

malfunctions or unforeseen circumstances. Additionally, 

algorithms will be designed to continuously learn and adapt 

from real-world experiences, further enhancing their 

reliability over time. 
 
5) GOVERNANCE: ESTABLISHING THE RULES OF THE 

ROAD 

With the rise of SDVs, a clear and comprehensive 

governance framework will be essential. These 

frameworks will define how SDVs interact with human-

driven vehicles and pedestrians, ensuring order and 

predictability on the roads. Imagine a set of regulations that 

govern communication protocols between SDVs, establish 

right-of-way rules in complex situations, and clearly define 

liability in case of accidents.  Developing robust governance 

frameworks will be a collaborative effort between 

policymakers, developer, and industry leaders, fostering a 

safe and efficient transportation ecosystem. 

VIII. CONCLUSION 

This review paper provides an extensive overview of 

innovative models in DL based motion planning and E2EL 

technologies within the field of SDV) It covers various 

performance metrics and challenges encountered in SDVs 

development. The primary approaches discussed include 

behavior planning, trajectory planning, and E2E learning 

(Imitation Learning and Reinforcement Learning). Each 

approach's state-of-the-art model is presented and compared. 

The survey also highlights the importance of practical 

enablers such as datasets and simulation deployment 

frameworks, along with their comparisons and reviews. 

Additionally, the survey offers insights into the 

implementation of state-of-the-art techniques and compares 

common performance metrics across behaviour planning, 

trajectory planning, and E2E learning for SDV. It analyses 

the distribution of different implementation types among 

reviewed papers. Furthermore, the survey identifies ongoing 

challenges in the development of SDV for real-world 

environment and provides future recommendations for 

addressing these challenges.  
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