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Abstract

Random Boolean networks (RBN) and Cellular Automata
(CA) operate in a very similar way. They update their state
with simple deterministic functions called Boolean function
or Transition Table (TT), both being essentially the same
mechanism under different names. This paper applies a con-
cept most known from CA called Minimum Equivalence
(ME). ME is applied to RBN and shows how to calculate the
number of unique computations for a given number of neigh-
bours. Crucially, it is shown how RBN rules are even more
equivalent than in CA, how the set can be reduced into even
fewer unique rules, and how the concept becomes more rel-
evant with larger neighbourhoods. For example, switching
transformation alone reduces the number of unique rules in
RBN with 4 neighbours from 65 536 to only 3 984 (6.1%)
rules. Additionally, this paper examines the ME and transfor-
mations in substrates beyond Elementary CA (ECA), such as
CA with additional spatial dimensions and number of states.

Introduction

CA, RBN and everything in between has long been used as
models to understand computation in biology. von Neumann
(1966) demonstrated how a CA can be self-replicating.
Kauffman| (1969) suggested using RBN to model the Gene
Regulatory network. |[Walker| (1971, [1965); Walker and
Ashby|(1966)) studied an intermediate substrate between CA
and RBN to understand an organism’s behaviour. Wuensche
et al.| (1992)); Wuenschel (1992 1994} [1997)) investigated the
attractor basin of CA, RBN and intermediate substrates, and
it even goes as far as to suggest it is the Ghost in the Ma-
chine, referring to it as a cognitive substrate.

As early as 1965, the possible trivial transformations that
can be done to the rule-space to find equivalent rules were
discussed (Walker} [1965, p. 51, p. 176). While they were not
presented in ECA, they were introduced in a substrate close
enough that the ME would be the same in such a substrate.
In (Wolframl, |1986)} 2018} |L1 and Packard, 1990; [Wuensche

et al., 1992), the 88 ME rules of ECA were demonstrated and
made accessible. In (Li, [1992), Li briefly explained what
changes for the ME when applied in a substrate closer to
RBN. In (Wuensche, 1997, p. 4), ME was also very briefly
mentioned in a 2D CA context. The few studies that propose
the concept outside of ECA, explain the concept only briefly.
Therefore, this paper suggests it is of value to examine the
ME principle and how it changes in relevant substrates and
illustrate how to calculate it.

This paper builds on the ME principle and applies it to
RBN, demonstrates how it can be calculated for any given
number of neighbours, and propose an algorithm for calcu-
lating it. It demonstrates how the ME in RBN is even more
equivalent than in CA. Furthermore, it demonstrates how the
reduction in unique computation grows with the number of
neighbours. In addition, ME in CA beyond ECA is exam-
ined, and what happens when adding more spatial dimen-
sions and possible states is demonstrated. This paper’s find-
ings suggest there is untapped potential in many substrates
for efficiency, particularly in exhaustive search.

Background
Cellular Automata

CA is a simple substrate consisting of cells in limited distinct
states. The cells are connected uniformly and change state
synchronously depending on the configuration of states of
their immediate neighbours in the grid. How they change is
determined by a deterministic lookup table called the Tran-
sition Table (TT). ECA is a subset of CA in 1-dimension,
binary states (S = 2) and 3 neighbours (K = 3) (left,
right and centre). Therefore, ECA only has S° =02 =
256 possible rules, and the whole set of these is often
named the rule-space. It is a convention to name individ-
ual rules in a rule-space after the output states of the TT
Binary(01011010) = Decimal(90). CA is deterministic,
and the rule, together with the initial condition, leads the
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Figure 1: Example of 1 dimensional CA with rule 90 with
TT, starting from a central cell on, executing 7 time-steps.

CA into a set of subsequent states called the trajectory. An
example of rule 90 can be seen in Figure

Beyond ECA are many other types of CA, such as 2-
dimensional CA seen in Figure @ In this substrate, the most
typical neighbourhood scheme is one of two configurations
in Figure 3]

2 dimensional CA

Figure 2: Single time-step of a 2-dimensional CA with Con-
way’s Game of Life rules. (Gardner, [1970)

von Neumann Moore

Figure 3: Common 2-dimensional neighbourhood schemes.

Many additional forms of CA exist, e.g. Stochastic CA
(Pontes-Filho et al.,2022)), Asynchronous CA (Fates|[2013]),
Continuous CA (Chanl, 2020), a combination (Mordvintsev
et al [2020; [Variengien et al.l 2021} or beyond simple clas-
sification (Nichele et al., 2016, 2017). Equivalences can be
made in these substrates as well. However, this work limits
itself to deterministic, discrete and synchronous substrates.

Random Boolean Networks

The RBN is similar to a CA yet has two key differences.
Firstly, in the RBN, the grid neighbour connections are not
regular but randomly set up. Secondly, every node (cell) typ-
ically has a random TT, often called an Activation function
or Boolean function. This type of RBN is also sometimes
called Classical RBN (CRBN) (Gershenson, 2002). The
number of direct neighbours can be random, semi-random
or constant. The latter is called homogeneous RBN (Ger-
shenson| [2002), an example is given in Figure ]

Node E TT
CAD|E_
111 [ 1
110 | 0
101 |1
100 |0
011 |1
0100
0011
000]|0

Rul® 170

Rule 170 Ea.}

e0000-0: 00"
20000 0

Figure 4: Example of an RBN with 7 Nodes and 3 neigh-
bours, with a transition table in two forms and a short exe-
cution example.

As with CAs, several extensions exist beyond the orig-
inal RBN, such as Continuous RBN (Vohradsky, [2001)) or
stochastic RBN (Ribeiro et al., 2006; [Elowitz et al., [2002).
While Kauffman first developed the CRBN to model gene
regulatory networks, these more modern extensions to the
RBN model better emulate the biological activity of devel-
opment (Vohradsky, 2001} [Elowitz et al., 2002). However,
the CRBN were discovered early on (Kauffman, [1971) to
contain a limited number of stable states, or attractors, from
which the system would settle down to following a random
initialisation. The basin of attraction reduces numerous ini-
tial states to a few stable cycles or fixed points.

Intermediate Substrates: Homogeneous
Homogeneous RBN (HHRBN), Non-local CA,
Disordered CA

A system can be in a range of possible states that would be
somewhere between CA and RBN. This paper will discuss
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a substrate with homogeneous rules but random neighbour
wiring. Such a substrate will be called Homogeneous Ho-
mogenous RBN (HHRBN). HHRBN to distinguish it from
what is in |Gershenson| (2002) called HRBN. It is called
HHRBN rather than non-local CA because the substrate
seems to behave more like RBN than CA, and the equiva-
lence in this substrate is more applicable in RBN than CA.

L1 (1992) worked with systems where all cells had the
same activation function (TT), but the neighbour connec-
tions were in various configurations. Classifying the differ-
ent connection schemes as between non-local (random) and
partially-local (central self-reference) as well as non-distinct
and distinct input/output (uniform number of outputs). Li
then classifies the rule-space for these substrates using mean
field approximation and shows they are very neatly classi-
fied, particularly non-local CA (HHRBN).

Much earlier Walker| (1965} [1971); Walker and Ashby
(1966)) studied a system that Li would classify as partially-
local CA.

HHRBN has additional commonly used names beyond
non-local CA, such as Graph CA (Marr and Hiitt, 2009;
Grattarola et al., 2021) or (Cellular) Automata Networks
(Bhattacharjee et al.,[2020)

Wuensche| (1992) examined substrates between CA and
RBN, including non-local CA but also other disordered
CA. Wuensche defines disordered CA as a super-set of CA
which includes non-local CA and mixed rule CA. Further-
more, Wuensche calculates these networks’ basin of attrac-
tion fields and demonstrates how rewiring the network can
train or modify the basin of attraction.

Mixed rule CA is also known as Non-uniform CA (Cat-
taneo et al., |2009; Bhattacharjee et al., [2020) or hybrid CA
(Bhattacharjee et al., |2020)

Mathematical definition of RBN

HHRBN can be defined as the following. A set of N nodes
connected randomly to K number of other nodes, the spe-
cific connections for a given node can be denoted by K.
The nodes can be in one of the two binary states, and every
N has the same activation function f, (TT), out of 22" pos-
sible rule setups. If the requirements are relaxed to HRBN,
every node has a random activation function. If relaxed to
RBN, then K varies between nodes.

RBN Classification

ECA is often partitioned and classified into several different
categories or traits. In (Martinez, [2013)), a good overview of
many common or well-known ones can be found.

Similarly, RBN can be classified by their behaviour, i.e.
ordered, complex or chaotic (Gershenson, 2002} Kautfman
et al.,[1993)). Depending on the value of N and K, the be-
haviour might differ, and one alternative name for RBN is
NK model. |[Kauffman| (1990) added another parameter P
which can organise the rule-space. The rule has a given

P parameter value based on the number of neighbourhood
combinations resulting in a 1 or a 0. In later work (Kauff-
man et al.,|1993), the larger distribution dominates, meaning
P > 0.5. Figure[dhas P = 0.5. One can use this parameter
to control the behaviour. P close to 1 would likely result in
ordered behaviour, and P close to 0.5 would likely result in
chaotic behaviour. In between these, a critical (complex) P,
behaviour might be found in the phase transition between
order and chaos. This point or border is often also called
the edge of chaos. The work is reminiscent of CA work in
(Langtonl, (1990).

Another way to categorise RBN and CA is to look at
the basin of attraction. Wuensche et al.| (1992); 'Wuensche
(199211994, |1997)) did extensive work in both RBN and CA
and their basin of attractions. What opened up this possi-
bility was a method that could calculate backwards from a
state. Take a cell in a state and consider what possible lo-
cal neighbourhood configurations would result in this state.
These are the possible previous states (preimage) for the
neighbourhood. Finally, apply this for all the cells and limit
the possibilities between cells by constraint satisfaction. The
possible preimages often collapse to very few, making it pos-
sible to quickly calculate the basin of attraction.

[ Rule [ Equivalent [[ Rule | Equivalent [[ Rule [ Equivalent |

0 255 35 49,59,115 108 201

1 127 36 219 110 124,137,193
2 16,191,247 37 91 122 161

3 17,63,119 38 52,155,211 126 129

4 223 40 96,235,249 128 254

5 95 41 97,107,121 130 144,190,246
6 20,159,215 42 112,171,241 132 222

7 21,31,87 43 113 134 148,158,214
8 64,239,253 44 100,203,217 136 192,238,252
9 65,111,125 45 75,89,101 138 174,208,244
10 80,175,245 46 116,139,209 140 196,206,220
11 47.81,117 50 179 142 212

12 68,207,221 51 146 182

13 69,79,93 54 147 150

14 84,143,213 56 98,185,227 152 188,194,230
15 85 57 99 154 166,180,210
18 183 58 114,163,177 156 198

19 55 60 102,153,195 160 250
22 151 62 118,131,145 162 176,186,242
23 72 237 164 218
24 66,189,231 73 109 168 224,234,248
25 61,67,103 74 88,173,229 170 240
26 82,167,181 76 205 172 202,216,228
27 39,53,83 77 178
28 70,157,199 78 92,141,197 184 226
29 71 90 165 200 236
30 86,135,149 94 133 204
32 251 104 233 232
33 123 105
34 48,187,243 106 120,169,225

Table 1: The group of equivalent rules for ECA.

Minimum Equivalence (ME)

ECA consists of 22° = 256 rules, but due to symmetries
and other properties, there are only 88 rules that are con-
sidered unique. The reason is that all excluded rules can be
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transformed into one of the 88 unique rules by one of the
following trivial methods.

* reflection: switching left and right
» complement: switching O and 1

¢ reflection and complement: the combination of both
transformations

An overview of the 88 rules can be found in Table[Tl ex-
amples of the transformed rules can be found in Figure[5|and

6l

Rule 110

Rule 137 (reflection)

Figure 5: Reflection, complement and reflection comple-
ment transformation of rule 110 and equivalent with random
initialisation. Reflection is initialised with a mirrored state
and complement with a flipped value state.

Rule 110

Rule 137 (reflection)

Rule 124 (complement) Rule 193 (ref. & comp.)

Figure 6: Reflection, complement and reflection comple-
ment transformation of rule 110 and equivalent with centroid
initialisation. Reflection is initialised with a mirrored state
and complement with a flipped value state.

The concept of reflection and complement seems to orig-
inate already in (Walker, (1965, p. 51, p. 176), and more

densely explained by the same author in [Walker| (1971)). In
the previous source, the concept originated in an interme-
diate substrate between ECA and RBN, with two random
neighbours and itself. The ME concept works the same in
such a substrate, but the concept is perhaps best known when
applied to ECA in [Wolfram| (1986, |2018); |[Li and Packard
(1990); Wuensche et al.| (1992).

Equivalence in RBN

This section will explain how to apply the concept of ME to
RBN and provide enough insight that the reader might also
apply the concept beyond RBN. Therefore, this and the fol-
lowing sections should be considered the main contributions
of this paper.

Switching neighbours

In RBN, the order of the K is arbitrary and randomly set
up with the topology of the RBN. It is not featured in most
illustrations, see Figure d]and

3?
12

Figure 7: The topology map of an RBN does not normally
specify the order of the neighbours

This order is arbitrary, it is equally likely to get one order
over any of the other 6 orders possible for K = 3 illustrated
in Figure|[g]

PR
R

Figure 8: Possible input orders for RBN with K = 3, image
and future coloured images uses colourblind friendly colour
palette from Wong| (2011

One can trivially transform the rule to another by shifting
the corresponding TT entries as illustrated for rule 170 in
Figure 9] This transformation can be done for every topol-
ogy. Therefore, the rule transformed must also produce the
same space of trajectories and distribution for that space. For
every trajectory, it is just as likely to get the corresponding
equivalent when creating the RBN. Therefore, they are just
as likely to appear. Any deviation in the result of any experi-
ment from equivalent rules should only be indistinguishable
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Rule 170

e0000:0 00
20000 0 0

[Switch node 2 and 3
°go eoo
|Apply For TT
©000° 00010 "
20000 0nc
[Reorder

"$ong Ny
20000 1c 500

Rule 204

Figure 9: Taking the TT from Figure 4] this demonstrates
switching the central and left neighbour turns rule 170 into
rule 204.

from pure luck, granted that the generation of the RBN is
random.

In CA, the reflection equivalence is only equivalent un-
der trivial transformation. In RBN, this switching trans-
formation is also equivalent under trivial transformation but
also additionally equivalent from having the same probabil-
ity of hitting the same trajectory in the space of trajectories.
Therefore, they are more equivalent than the same concept
in CA.

Algorithm

The switching transformation can be generalised into an al-
gorithm. First, find the unique possible orders for a particu-
lar K, then find switching pathways to get to that condition.

Number every sub-value in the permutation 0...n — 1. If
the subset values are not in order, they must be switched.
However, as multiple values can be out of order, it is also
necessary to find the path or combination of the switching
as illustrated in Figure[I0] This correct path can be found by
brute force or shuffling the order until it is correct. As the

000 960 @%o
%Qﬁ\@of\@

Figure 10: Transformation for 6 possible equivalences. The
figure includes possible switching orders

next portion of the full algorithm is on a different scale, the
wasted computation by shuffling here is negligible. Pseu-
docode for how this part can be done is presented in Algo-
rithm 11

Algorithm 1 How to find correct switching path
PE < permutations for K
for each P in PE do
S«
for each in order subset of size 2 P in P do
if P, > P,, then S append P
end if
end for
while (Apply S on Py) # P do shuffle S
end while
end for

Once this is prepared, it is simple to go through every rule
and apply the transformation on the rule table, then reorder it
as displayed in Figure[9]for the full TT. There are also many
ways to improve performance, e.g. parallel processing or
using a hashmap of all rules found and skipping them in the
loop.

An implementation of the algorithm in python code can
be found Online

Computational Rule-space of K = 3

If the switching transformation is applied for K = 3, the
following rule-set of only 80 rules represents the computa-
tional space, as seen in Table @ Rules that are totalistic or
invariant to direction do not form equivalent groups, rules
invariant to a switch form sets of 3, and rules that are variant
on all switches form sets of 6.

Complementary transformation and when it can be
applied

Compared to CA, the complementary transformation has
mostly stayed the same in HHRBN and RBN. Considering

! https://github.com/DeepCANFR/RBN_Equivalence/blob/
main/rbn_eq.py
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[ Rule [ Equivalent “ Rule [ Equivalent

128
1 129
2 4,16 130 132, 144
3 5,17 131 133,145
6 18,20 134 146, 148
7 19,21 135 147, 149
8 32,64 136 160, 192
9 33,65 137 161, 193
10 12, 34, 48, 68, 80 138 140, 162, 176, 196, 208
11 13, 35, 49, 69, 81 139 141, 163, 177, 197, 209
14 50, 84 142 178, 212
15 51,85 143 179,213
22 150
23 151
24 36, 66 152 164, 194
25 37,67 153 165, 195
26 28, 38, 52, 70, 82 154 156, 166, 180, 198, 210
27 29,39,53,71, 83 155 157,167, 181, 199, 211
30 54, 86 158 182,214
31 55, 87 159 183,215
40 72,96 168 200, 224
41 73,97 169 201, 225
42 76,112 170 204, 240
43 77,113 171 205, 241
44 56, 74, 88, 98, 100 172 184,202, 216, 226, 228
45 57,75, 89,99, 101 173 185,203, 217, 227, 229
46 58,78,92,114,116 174 186, 206, 220, 242, 244
47 59,79,93, 115, 117 175 187,207, 221, 243, 245
60 90, 102 188 218, 230
61 91, 103 189 219, 231
62 94,118 190 222,246
63 95,119 191 223,247
104 232
105 233
106 108, 120 234 236,248
107 109, 121 235 237,249
110 122, 124 238 250, 252
111 123, 125 239 251,253
126 254
127 255

Table 2: The ME set for K = 3 without counting comple-
ment

that the switching transformation is more equivalent than its
reflection counterpart in CA, the difference between when
it is valid to apply switching and complement would seem
to have expanded at first. The distinction of which state is
quiescent and which is active is arbitrary as long as they
are treated the same way in the system, but in many con-
texts, it is not. It is common in CA to initiate the CA with
a majority of one state. e.g. initiate with a central cell
as active as in Figure [, Therefore, the complement rule
would only strictly be equivalent if initiated with the oppo-
site states. This requirement also holds in HHRBN, but it be-
comes more valid again for some special initial conditions,
such as the common random initialisation. In a similar man-
ner as for the switching transformation, the random initiali-
sation makes the equivalence valid. It is as likely to get the
setup leading to the same trajectory in its normal or comple-
ment rule setup. For RBN, this would be more complicated,
but still, there are trivial equivalent cases, e.g. if one went
through every node and switched it out with the complement
rule and switched the initial condition, this RBN would be
equivalent.

If applying the complement, switching and combinations

[ Rule [ Equivalent
0 255

1 127

2 4,16, 191, 223, 247
3 5,17,63,95, 119

6 18, 20, 159, 183, 215
7

8

9

19,21, 31, 55, 87

32, 64,239, 251, 253

33,65, 111, 123, 125

10 12, 34, 48, 68, 80, 175, 187, 207, 221, 243, 245
11 13, 35,47, 49, 59, 69, 79, 81, 93, 115, 117

14 50, 84, 143, 179, 213

15 51,85
22 151
23

24 36, 66, 189, 219, 231

25 37,61, 67,91, 103

26 28, 38, 52, 70, 82, 155, 157, 167, 181, 199, 211
27 29, 39,53,71, 83

30 54, 86, 135, 147, 149

40 72,96, 235, 237, 249

41 73,97, 107, 109, 121

42 76, 112, 171, 205, 241

43 77,113

44 56, 74, 88, 98, 100, 173, 185, 203, 217, 227, 229
45 57,75, 89, 99, 101

46 58,78,92, 114, 116, 139, 141, 163, 177, 197, 209
60 90, 102, 153, 165, 195

62 94,118, 131, 133, 145

104 233

106 108, 120, 169, 201, 225

110 122,124,137, 161, 193

126 129

128 254

130 132, 144, 190, 222, 246

134 146, 148, 158, 182, 214

136 160, 192, 238, 250, 252

138 140, 162, 174, 176, 186, 196, 206, 208, 220, 242, 244
142 178, 212

152 164, 188, 194, 218, 230
154 156, 166, 180, 198, 210
168 200, 224, 234, 236, 248

170 204, 240
172 184, 202, 216, 226, 228
232

Table 3: The ME set for K = 3 with complement

is valid, then the rule-set would be represented with only 46
rules (18%), as seen in Table 3]

Discussion
Where it can be applied and beyond HHRBNs

The main use case for the RBN equivalence is for an ex-
haustive search of the RBN rule space. This is most feasible
when working with a workable search space like HHRBN.
It can reduce the search space quite effectively. For K = 3,
it reduces 256 rules to just 46 (a reduction to only 18% of its
original size)

This concept also has potential applications outside of
HHRBN. For example, many nodes will have the same TT if
one simulates a very large RBN (Kauffman| (1990) already
used RBNs with V- = 10000 around 30 years ago). In or-
der to save space and lookup time, one could reuse the same
TT between nodes with the same rules. This list of lookup
tables would be shorter and save some memory space if re-
duced further to just the ME rules. A smaller memory foot-
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print can, on its own, have some optimising effects, e.g. the
whole set of tables fitting within a lower layer of memory,
cache, or enabling the complete list to exist within a GPUs
memory.

It is important to note that when generating RBN’s some
of the rules have a different number of equivalent rules. This
means there is a difference in how likely a rule is picked de-
pending on whether the RBN is generated from the ME rules
or the full set. If this is important, it is easy to get past. When
generating the RBN use the full set and exchange the rule
for the ME afterwards or generate the RBN with a different
probability of a rule being picked based on the number of
equivalent rules in the equivalence set.

Additionally, for a larger K value, the rule space contains
every rule from the smaller K values. The rule-space con-
tains the rules that are invariant to a neighbour, these rules
would be equivalent to a rule in a smaller K value. There-
fore, any rule can be mapped into larger K, forming equiva-
lences across K values. This can be relevant if working with
RBN (distribution of K).

Additionally, ME is helpful without being an optimisation
tool. For example, consider Kauffman|(1990) and the work
with the P parameter. A switching equivalence set would all
have the same P parameter value. Thus, it reduces the num-
ber of unique computations within a given P parameter set
by quite a considerable amount. This shows that the compu-
tational variants in a given P parameter value are lower than
they would seem without knowing the equivalence.

In comparison to totalistic RBN

In totalistic RBN, rules depend on the number of on and
off neighbours instead of distinguishing between cell neigh-
bourhoods. Therefore, it is invariant to the order of K.
For totalistic HRBN with K = 3, only 2* = 16 possible
rules would be in the rule-space. These rules would also be
contained within a common RBN rule space. The switching
equivalence concept can be viewed as unifying many non-
totalistic RBNs. As previously mentioned, totalistic RBN
rules will have no equivalent rules in the switching equiva-
lence. This is because switching the neighbour of a totalistic
rule would turn it into itself again. Considering the engi-
neer’s point of view, a fair question might be, "What is the
computational difference between the totalistic RBN and the
non-totalistic RBN rules, and how could it be useful?”.

The equivalence set clarifies that for an RBN, the dis-
tinction between left and right holds little meaning, but it
does not follow that the rule distinguishes behaviour from
nodes 1,2,3 being different. These differences give a poten-
tial degree of freedom where some rules behave more or less
chaotically, allowing for a finer search for the edge of chaos.
If “chaos to order is the only useful variance in RBN” is
a correct axiom, and if there is another way to control for
chaos to order, the utility of the non-totalistic RBN is re-
placed by that function instead. There could be a better con-

trol parameter. Considering how the behaviour landscape
changes when moving to heterogeneity (Sanchez-Puig et al.}
2022), perhaps regulating the substrate with the level of het-
erogeneity is a better control parameter. If such a control
parameter exists, then one can show that there is no utility
from the rules that cannot be replaced with the control pa-
rameter, then the logical conclusion is that there is no point
in going beyond totalistic RBN as an engineering tool, for
this purpose at least. If this holds, then one can reduce the
computational space of RBN to just totalistic rules.

Beyond just K = 3

This paper supplied a list of the unique rules for K = 3, but
RBN equivalence applies to any K.

The number of possible equivalent rules for the switching
is K!. Therefore, we hypothesise that the larger the K, the
more significant the reduction. In Table [d] even at K =
4, the search space is already reduced to just 3.1% of its
original size.

Minimum Equivalence in non-binary systems

So far, only binary systems have been considered, but the
complement transformation could also be relevant in dis-
crete non-binary systems. This transformation would work
in a very similar way to switching transformations in RBN.
Also, in this substrate, switching paths between possible per-
mutations of the states is relevant, as in Figure

A system with 3 states and 3 neighbours has many pos-
sible rule configurations 33" = 7625 597 484 987. With
the current level of computational power, it is not impos-
sible, but it is not entirely feasible to calculate the ME set
for this rule-space, let alone exhaustively search. Neverthe-
less, some configurations still make sense. For example, in a
totalistic system, the switching or reflection transformation
would turn into itself and is not helpful to apply, but this
does not hold for the compliment transformation. There-
fore, the complement equivalence is still relevant in totalis-
tic rule-space. Furthermore, the size of a totalistic rule-set
does not grow at the same level, as seen in TableE} In addi-
tion, a system with K = 2 would also be feasible for both
transformations.

Minimum Equivalence in 2D CA

In a 2D CA substrate, the reflection transformation changes
too. This concept of equivalence in 2D CA was briefly men-
tioned in (Wuensche, 1997, p. 4), but never explained or
fleshed out. In 2D, instead of just reflection, there is now
also every neighbourhood rotation. The rotation is quite
clearly equivalent, but we hypothesise that the switching be-
tween right and left also are equivalent, as seen in Figure
Up and down would also be equivalent, but it is possible
to get to the same states by combining the left to right and
rotation.
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K l | 3 ] 4 l
rules 16 256 65536
switches 2 6 24
ME switching 12(75%) 80(31%) 3984(6.1%)
ME switching + compliment 7(44%) 46 (18%) 2 036(3.1%)

Table 4: The number of unique rules for different K. It shows a trend for smaller % of unique computational rules the larger the

K.
l K [ 2 ] 3 l 4 |
rules 19683 [ 7625597484987 | 4.4 %107
totalistic rules 729 50 549 14 348 907

Table 5: Rule-space size in a 3-state system

¥ &
¥ &

o A

Figure 11: Equivalent symmetries in a 2D von Neumann

neighbourhood. Top row: rotation. Bottom row: reflection
and combinations

The same would apply to the Moore neighbourhood, but
the rule-space is much larger 22’ = 1.3« 1054, so no ex-
haustive searches are expected anytime soon.

Up until 2D, the transformation would result in an equiv-
alence is apparent, but for this 2D ME, it seems less clear
why left-to-right transformation leads to an equivalence or
not. Essentially, could there be interference from the new
dimension? Some trivial transformations would not lead to
equivalent rules because they do not satisfy the same prop-
erty. The equivalent transformations must uphold that the
transformation and any development of that CA to any de-
terministic subsequent states can be freely transformed back
with perfect accuracy. The same could be stated in first-
order predicate logic as seen in Equation [I]

Ry = Ry <= Va3y3f where f,, — yi/\f?;iz = iy, (1)

Meaning that one can transform a CA to the equivalent
rule and transform the states likewise (e.g. for rotation, also
rotate the starting state). If it can be run for an arbitrary num-
ber of steps and through this state, know exactly what state
the original rule should be. If this is possible for all state,
then the rules are equivalent under trivial transformation.

This 2D CA left-to-right equivalence was tested by run-

ning 1000 random rules with random initialisation for 10
steps, all successful. Source code can be found onlineE]

Conclusion and Future Work

This paper has shown how to apply trivial transformations
beyond ECA; into RBN, multi-state, 2D CA or totalistic
rules. All the different substrates have their own ME sets,
and hopefully, our work has made them more accessible.

It has been demonstrated how these ME sets in specific
substrates shrink the rule space significantly. Combined
with the increase in computational power now available, we
are crossing into the viability to do explorations on the com-
putational space like what was done in ECA, but on sub-
strates beyond ECA.

This work opens up interesting possibilities. Work that
was previously limited to ECA can now be extended be-
yond. For example, the reduction in exhaustive search space
enables avenues to explore how the distribution in behaviour
maps between substrates.
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