Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey
dc.contributor.author | Abbasi, Mahmoud | |
dc.contributor.author | Shahraki, Amin | |
dc.contributor.author | Taherkordi, Amirhosein | |
dc.date.accessioned | 2021-10-21T13:14:45Z | |
dc.date.available | 2021-10-21T13:14:45Z | |
dc.date.created | 2021-02-20T19:07:25Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Computer Communications. 2021, 170, 19-41. | en_US |
dc.identifier.issn | 0140-3664 | |
dc.identifier.uri | https://hdl.handle.net/11250/2824552 | |
dc.description.abstract | Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.subject | network traffic monitoring and analysis | en_US |
dc.subject | network management | en_US |
dc.subject | deep learning | en_US |
dc.subject | machine learning | en_US |
dc.subject | survey | en_US |
dc.subject | NTMA | en_US |
dc.subject | edge intelligence | en_US |
dc.subject | IoT | en_US |
dc.subject | QoS | en_US |
dc.title | Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | © 2021 The Author(s). | en_US |
dc.subject.nsi | VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550 | en_US |
dc.source.pagenumber | 19-41 | en_US |
dc.source.volume | 170 | en_US |
dc.source.journal | Computer Communications | en_US |
dc.identifier.doi | 10.1016/j.comcom.2021.01.021 | |
dc.identifier.cristin | 1892036 | |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 1 |
Files in this item
This item appears in the following Collection(s)
-
Institutt for informasjonsteknologi og kommunikasjon [162]
Enheten inneholder bidrag fra ansatte ved Institutt for informasjonsteknologi og kommunikasjon