• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Høgskolen i Østfold
  • Avdeling for ingeniørfag (gjelder til og med 2020)
  • Tidsskrift- og avisartikler. IR
  • Vis innførsel
  •   Hjem
  • Høgskolen i Østfold
  • Avdeling for ingeniørfag (gjelder til og med 2020)
  • Tidsskrift- og avisartikler. IR
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications

Cao, Vinh Duy; Pilehvar, Shima; Salas Bringas, Carlos; Szczotok, Anna; Rodriguez, Juan F.; Carmona, Manuel; Al-Manasir, Nodar; Kjøniksen, Anna-Lena
Journal article, Peer reviewed
Published version
Thumbnail
Åpne
1-s2.0-S0196890416310706-main.pdf (2.407Mb)
Permanent lenke
http://hdl.handle.net/11250/2476319
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Tidsskrift- og avisartikler. IR [71]
Originalversjon
Energy Conversion and Management. 2017, 133 56-66.   10.1016/j.enconman.2016.11.061
Sammendrag
Concretes with a high thermal energy storage capacity were fabricated by mixing microencapsulated

phase change materials (MPCM) into Portland cement concrete (PCC) and geopolymer concrete (GPC).

The effect of MPCM on thermal performance and compressive strength of PCC and GPC were investigated. It was found that the replacement of sand by MPCM resulted in lower thermal conductivity and higher thermal energy storage, while the specific heat capacity of concrete remained practically stable when the phase change material (PCM) was in the liquid or solid phase. Furthermore, the thermal conductivity of GPC as function of MPCM concentration was reduced at a higher rate than that of PCC. The power consumption needed to stabilize a simulated indoor temperature of 23°C was reduced after the addition of MPCM. GPC exhibited better energy saving properties than PCC at the same conditions.

A significant loss in compressive strength was observed due to the addition of MPCM to concrete.

However, the compressive strength still satisfies the mechanical European regulation (EN 206-1, compressive strength class C20/25) for concrete applications. Finally, MPCM-concrete provided a good thermal stability after subjecting the samples to 100 thermal cycles at high heating/cooling rates.
Utgiver
Elsevier
Tidsskrift
Energy Conversion and Management

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit