A novel energy-safe algorithm for enhancing the battery life for IoT sensors applications
Peer reviewed, Journal article
Published version
Permanent lenke
https://hdl.handle.net/11250/2826245Utgivelsesdato
2021Metadata
Vis full innførselSamlinger
Sammendrag
Energy safe is mandatory for all isolated IoT tools, as in long way roads, mountains, or even in smart cities. If increasing the lifetime of these tools, the rentability of the global network loop becomes more efficient. Therefore, this paper's base main is to present a new approach for saving energy inside the source nods by supervising the state of energy inside each source nod and calculating the duty cycle factor. The relationship between these parameters is based on an optimization problem formulation. In this respect, the present paper is designed to propose a new approach that deals with increasing the lifetime of the Wireless Sensors Network (WSN) attached nodes, as fixed in the application. The newly devised design rests on implementing the IEEE 802.15.4 standard beacon-enabled mode, involving a cluster tree topology. Accordingly, every subgroup is allotted to apply a specifically different duty cycle, depending on the battery's remaining energy level, which contributes to creating a wide range of functional modes. Hence, various thresholds are defined. Simulation results are proving the efficiency of the proposed approach and show the energetic benefit. The proposed flowchart has minimized the consumed energy for the WSN, which improve the battery lifetime and enhance the IoT applications robustness. Simulations and experiments have been carried out under different conditions and the results proved that the proposed method is a viable solution.