Vis enkel innførsel

dc.contributor.authorMohanraj, Deepak
dc.contributor.authorGopalakrishnan, Janaki
dc.contributor.authorChokkalingam, Bharatiraja
dc.contributor.authorMihet-Popa, Lucian
dc.date.accessioned2022-09-22T15:09:01Z
dc.date.available2022-09-22T15:09:01Z
dc.date.created2022-06-23T15:23:11Z
dc.date.issued2022
dc.identifier.citationIEEE Access. 2022, 10, 73635 - 73674.en_US
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/11250/3020734
dc.description.abstractElectric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectelectric vehiclesen_US
dc.subjectelectric motorsen_US
dc.subjectcontrol techniquesen_US
dc.subjecttorque rippleen_US
dc.subjectbrushless DC motoren_US
dc.subjectpermanent magnet synchronous motoren_US
dc.subjectinduction motoren_US
dc.subjectswitched reluctance motoren_US
dc.subjecthub motorsen_US
dc.subjecte-motors designen_US
dc.subjectreluctance motorsen_US
dc.subjectinduction motorsen_US
dc.subjecttorque measurementen_US
dc.subjectpermanent magnet motorsen_US
dc.subjectbrushless DC motorsen_US
dc.subjecttorqueen_US
dc.subjectcontrol systemsen_US
dc.titleCritical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Reviewen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Teknologi: 500::Elektrotekniske fag: 540en_US
dc.source.pagenumber73635 - 73674en_US
dc.source.volume10en_US
dc.source.journalIEEE Accessen_US
dc.identifier.doi10.1109/ACCESS.2022.3187515
dc.identifier.cristin2034614
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal