Show simple item record

dc.contributor.authorShahraki, Amin
dc.contributor.authorTaherkordi, Amir
dc.contributor.authorHaugen, Øystein
dc.date.accessioned2021-10-04T12:00:37Z
dc.date.available2021-10-04T12:00:37Z
dc.date.created2021-08-11T12:54:14Z
dc.date.issued2021
dc.identifier.citationComputer Networks. 2021, 194, Artikkel 108125.en_US
dc.identifier.issn1389-1286
dc.identifier.urihttps://hdl.handle.net/11250/2787479
dc.description.abstractInternet of Things (IoT) refers to a system of interconnected heterogeneous smart devices communicatingwithout human intervention. A significant portion of existing IoT networks is under the umbrella of ad-hoc andquasi ad-hoc networks. Ad-hoc based IoT networks suffer from the lack of resource-rich network infrastructuresthat are able to perform heavyweight network management tasks using, e.g. machine learning-based NetworkTraffic Monitoring and Analysis (NTMA) techniques. Designing light-weight NTMA techniques that do notneed to be (re-) trained has received much attention due to the time complexity of the training phase. In thisstudy, a novel pattern recognition method, called Trend-based Online Network Traffic Analysis (TONTA), isproposed for ad-hoc IoT networks to monitor network performance. The proposed method uses a statisticallight-weight Trend Change Detection (TCD) method in an online manner. TONTA discovers predominant trendsand recognizes abrupt or gradual time-series dataset changes to analyze the IoT network traffic. TONTA isthen compared with RuLSIF as an offline benchmark TCD technique. The results show that TONTA detectsapproximately 60% less false positive alarms than RuLSIF.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectInternet of Thingsen_US
dc.subjectIoTen_US
dc.subjectNTMAen_US
dc.subjectpattern recognitionen_US
dc.subjectnetwork traffic analysisen_US
dc.subjectnetwork monitoringen_US
dc.subjecttrend change detectionen_US
dc.titleTONTA: Trend-based Online Network Traffic Analysis in ad-hoc IoT networksen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 The Authors.en_US
dc.subject.nsiVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550en_US
dc.source.pagenumber108125en_US
dc.source.volume194en_US
dc.source.journalComputer Networksen_US
dc.identifier.doi10.1016/j.comnet.2021.108125
dc.identifier.cristin1925308
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal