Show simple item record

dc.contributor.authorAbayomi-Alli, Olusola Oluwakemi
dc.contributor.authorDamaševičius, Robertas
dc.contributor.authorMisra, Sanjay
dc.contributor.authorMaskeliunas, Rytis
dc.contributor.authorAbayomi-Alli, Adebayo
dc.date.accessioned2022-03-22T16:28:39Z
dc.date.available2022-03-22T16:28:39Z
dc.date.created2022-02-01T16:01:02Z
dc.date.issued2021
dc.identifier.citationTurkish Journal of Electrical Engineering and Computer Sciences. 2021, 29 (SI-1), 2600-2614.en_US
dc.identifier.issn1300-0632
dc.identifier.urihttps://hdl.handle.net/11250/2986884
dc.description.abstractThe continuous rise in skin cancer cases, especially in malignant melanoma, has resulted in a high mortality rate of the affected patients due to late detection. Some challenges affecting the success of skin cancer detection include small datasets or data scarcity problem, noisy data, imbalanced data, inconsistency in image sizes and resolutions, unavailability of data, reliability of labeled data (ground truth), and imbalance of skin cancer datasets. This study presents a novel data augmentation technique based on covariant Synthetic Minority Oversampling Technique (SMOTE) to address the data scarcity and class imbalance problem. We propose an improved data augmentation model for effective detection of melanoma skin cancer. Our method is based on data oversampling in a nonlinear lower-dimensional embedding manifold for creating synthetic melanoma images. The proposed data augmentation technique is used to generate a new skin melanoma dataset using dermoscopic images from the publicly available P H2 dataset. The augmented images were used to train the SqueezeNet deep learning model. The experimental results in binary classification scenario show a significant improvement in detection of melanoma with respect to accuracy (92.18%), sensitivity (80.77%), specificity (95.1%), and F1-score (80.84%). We also improved the multiclass classification results in melanoma detection to 89.2% (sensitivity), 96.2% (specificity) for atypical nevus detection, 65.4% (sensitivity), 72.2% (specificity), and for common nevus detection 66% (sensitivity), 77.2% (specificity). The proposed classification framework outperforms some of the state-of-the-art methods in detecting skin melanoma.en_US
dc.language.isoengen_US
dc.publisherTÜBİTAKen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectMalignant melanomaen_US
dc.subjectskin cancer recognitionen_US
dc.subjectdata scarcityen_US
dc.subjectdata augmentationen_US
dc.subjectoversamplingen_US
dc.subjecttransfer learningen_US
dc.subjectdeep learningen_US
dc.titleMalignant skin melanoma detection using image augmentation by oversampling in nonlinear lower-dimensional embedding manifolden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© TÜBİTAKen_US
dc.subject.nsiVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Onkologi: 762en_US
dc.subject.nsiVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551en_US
dc.source.pagenumber2600-2614en_US
dc.source.volume29en_US
dc.source.journalTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.source.issueSI-1en_US
dc.identifier.doi10.3906/elk-2101-133
dc.identifier.cristin1996509
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal