Pareto Optimized Large Mask Approach for Efficient and Background Humanoid Shape Removal
Peer reviewed, Journal article
Published version
View/ Open
Date
2023Metadata
Show full item recordCollections
Abstract
The purpose of automated video object removal is to not only detect and remove the object of interest automatically, but also to utilize background context to inpaint the foreground area. Video inpainting requires to fill spatiotemporal gaps in a video with convincing material, necessitating both temporal and spatial consistency; the inpainted part must seamlessly integrate into the background in a variety of scenes, and it must maintain a consistent appearance in subsequent frames even if its surroundings change noticeably. We introduce deep learning-based methodology for removing unwanted human-like shapes in videos. The method uses Pareto-optimized Generative Adversarial Networks (GANs) technology, which is a novel contribution. The system automatically selects the Region of Interest (ROI) for each humanoid shape and uses a skeleton detection module to determine which humanoid shape to retain. The semantic masks of human like shapes are created using a semantic-aware occlusion-robust model that has four primary components: feature extraction, and local, global, and semantic branches. The global branch encodes occlusion-aware information to make the extracted features resistant to occlusion, while the local branch retrieves fine-grained local characteristics. A modified big mask inpainting approach is employed to eliminate a person from the image, leveraging Fast Fourier convolutions and utilizing polygonal chains and rectangles with unpredictable aspect ratios. The inpainter network takes the input image and the mask to create an output image excluding the background humanoid shapes. The generator uses an encoder-decoder structure with included skip connections to recover spatial information and dilated convolution and squeeze and excitation blocks to make the regions behind the humanoid shapes consistent with their surroundings. The discriminator avoids dissimilar structure at the patch scale, and the refiner network catches features around the boundaries of each background humanoid shape. The efficiency was assessed using the Structural Learned Perceptual Image Patch Similarity, Frechet Inception Distance, and Similarity Index Measure metrics and showed promising results in fully automated background person removal task. The method is evaluated on two video object segmentation datasets (DAVIS indicating respective values of 0.02, FID of 5.01 and SSIM of 0.79 and YouTube-VOS, resulting in 0.03, 6.22, 0.78 respectively) as well a database of 66 distinct video sequences of people behind a desk in an office environment (0.02, 4.01, and 0.78 respectively).